본 연구의 목적은 2004년부터 2017년까지의 해변과 해수욕장을 키워드로 하는 지역신문기사를 이용하여 계절별 현안을 분석하는 것이다. 분석을 위해 오픈소스 프로그램을 기반으로 한 토픽모델링과 시계열회귀분석을 수행하였다. 토픽모델링 분석 결과 계절별 토픽은 봄 35개, 여름 47개, 가을 36개, 겨울 35개가 도출되었다. 모든 계절에서 공통적으로 도출된 주제는 해수욕장, 축제 행사, 사건사고 및 환경문제, 관광지, 개발 분양, 행정 정책, 날씨로 나타났다. 시계열회귀분석 결과 봄에는 35개의 토픽 중 5개의 상승 토픽과 2개의 하락 토픽이 도출되었다. 여름에는 47개의 토픽 중 6개의 상승 토픽과 3개의 하락 토픽이 도출되었다. 가을에는 36개의 토픽 중 4개의 상승 토픽과 3개의 하락 토픽이 도출되었다. 겨울에는 35개의 토픽 중 3개의 상승 토픽과 3개의 하락 토픽이 도출되었다. 그리고 각 계절별로 상승 토픽과 하락 토픽에 해당하지 않는 토픽은 중립 토픽으로 구분하였다. 본 연구를 통해 해변과 같이 계절별로 용도가 다른 경우에 지역현안에 대한 분석을 위해 계절별 토픽모델링을 진행한다면 더욱 유용한 결과를 도출하고 이에 따른 세부적인 진단이 가능하다고 판단된다.
한정된 기간의 짧은 유출량 기록을 갖는 댐 유역에서의 수자원 시스템 거동예측은 수문학적 지속성여부에 대한 판단이 선행 되어야 하며 가용한 시계열자료에 대한 추계학적 분석을 통하여 실시하여야 한다. 본 연구에서는 계절형 ARIMA모형을 통하여 안동댐 유역의 강우량, 증발량 및 유출량 시계열자료로 월별 수문시스템 거동을 예측하였으며, 예측된 결과를 토대로 TANK모형과 ARIMA+TANK결합모형에 의한 장기유출모의를 실시하였다. 분석결과 관측자료의 특성을 비교적 잘 반영 하였으며, 댐 유입량 예측을 위한 추계학적 결합모형의 적용가능성을 검토하였다. 이는 상대적으로 유출량자료의 보유년한이 짧은 대상유역의 시계열 수문인자 예측을 통한 유출모의의 적용으로 수자원의 중 장기 전략수립에 도움이 되리라 사료된다.
확률적 날씨 발생기(Stochastic weather generator)는 일일 날씨를 생성하는데 일반적으로 사용되는 방법으로 최근에는 일반화선형모형에 기초한 확률적 날씨 발생 방법이 제안되었다. 본 논문에서는 서울지역의 일일 기온을 모형화하하기 위해서 일반화선형모형에 기초한 확률적 날씨 발생기를 고려하였다. 이 모형에서는 계절성을 나타내는 변수와 강우발생 유무가 공변수로 사용되었다. 일반적으로 확률적 날씨 발생기에서는 생성된 일일 날씨가 월별 또는 계절별 총강우량이나 평균온도에 충분한 변동을 만들어 내지 못하는 과대산포 현상이 발생하는데, 이러한 한계를 극복하기 위해 본 연구에서는 평활된 계절별 평균 온도를 일반화선형모형의 공변수로 추가하였다. 그리고 제안된 모형을 1961년부터 2011년까지 51년 동안의 서울지역 일일 평균 기온자료에 적용하였다.
본 연구는 2003년 1사분기부터 2016년 2사분기 까지 인천국제공항에서 미주노선을 통하여 미주 내 공항에 도착하는 항공화물의 시계열 자료를 통하여 SARIMA 모형을 활용하여 항공화물 수요예측을 시행하였다. 또한 SARIMA 모형을 활용하여 만들어진 수요예측 모형과 기존 연구에 주로 활용되어졌던 ARIMA 모형을 활용하여 만들어진 수요예측 모형과 비교분석함으로써, 주기적인 특성 및 계절성을 가진 시계열 자료에 대한 SARIMA 모형의 상대적으로 우수한 예측 정확성을 입증하였다. 기존의 항공 관련 연구는 주로 여객에 관한 연구가 상대적으로 많았다. 또한 화물과 관련된 연구에서도 특정노선이 아닌 공항이나 전체에 대한 연구가 대부분이었다. 이러한 상황에서, SARIMA 모형을 활용하여 미주지역이라는 특정 노선에 대한 항공화물의 수요를 예측한 본 연구는 큰 의의가 있다고 생각된다.
이 연구는 단변량 시계열 중에서 계절 아리마 모형을 이용하여 경주지역 외국인 관광객을 예측하고자 한다. 이 연구를 위한 시계열 월별 자료는 1995년부터 2010년까지 수집하였다. 총 192개의 관측치를 분석에 사용하였는데, 성수기와 비수기의 관광객 차이가 아주 큰 것을 보여주고 있다. 예측분석결과, 경주지역의 외국인 관광객에 대한 최종 예측모형은 승법계절 ARIMA(1,1,0) $(4,0,0)_{12}$ 모형으로 선정되었다. 이 모형에 적용하여 미래의 경주지역의 외국인 관광객은 2011년 694천명, 2012년 715천명, 2013년 725천명, 2014년 738천명, 2015년 751천명이 방문하는 것으로 나타났다. 이는 향후 경주지역 외국인 관광객에게 효율적으로 관광시설을 공급함과 동시에 서비스를 제공하기 위한 관광정책을 수립하는 측면에서 관광관련 이해당사자들에게 매우 중요하다는 것을 시사하고 있다.
본 연구는 KTX 수송수요를 예측하기 위한 방법으로 다중개입 시계열 모형을 제안하였다. 구체적으로 2011년 이전의 자료로서 경부 2단계 개통 개입만 고려한 Kim과 Kim (Korean Society for Railway, 14, 470-476, 2011)의 연구를 수정 보완하기 위해 다양한 개입이 추가적으로 발생하고 있는 2011년 이후의 시계열 자료를 효과적으로 모델링하는 한편 KTX 수송수요를 정확히 예측하기 위한 방법으로 다중개입 계절형 ARIMA 모형을 도입하였다. 자료 분석을 통해 KTX 수송수요에 영향을 주었던 경부 및 호남 2단계 개통, 메르스 발병과 설추석 명절 등 다양한 개입의 효과를 효과적으로 해석하는 한편, 이를 통해 예측의 정확성을 높일 수 있음을 확인하였다.
This study was conducted to characterize groundwater and river-water fluctuations at a riverbank filtration site in Daesan-myeon adjacent to the Nakdong River, using time series analysis. Water levels from six observation wells from January 2003 to October 2003 were measured. The autocorrelation analysis indicates that the wells are divided into three groups: group 1 represents strong linearity and memory, group 2 intermediate linearity and memory, and group 3 weak linearity and memory. The analysis indicates that groundwater levels in different monitoring wells vary in response to river-water levels, groundwater withdrawal and seasonal rainfall. Cross-correlation was also divided into three groups. Group 1 shows the highest cross-correlation function (0.49 - 0.54) for a lag time of 0 hours, group 2 intermediate cross-correlation function (0.34 - 0.45), and group 3 the lowest cross-correlation function (0.23 - 0.25). Different cross-correlation functions among the 3 groups are interpreted as an effect of tile distance from the river to the pumping wells.
The distribution and changes of tropospheric nitrogen dioxide ($NO_2$) are analyzed using the satellite measurements data from GOME (Global Ozone Monitoring Experiment) and SCIMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY). We produced global maps of tropospheric $NO_2$ for 4 seasons using GOME measurements from January 1997 to June 2003. The global distribution shows high values in regions with dense population and high industrialization. Tropospheric $NO_2$ shows obvious seasonal changes depending on its emission and lifetime. Based on the good agreement between two instruments in the time period of overlapping measurements (January 2003-June2003), we linked SClAMACHY data to the GOME time series. The combined time series over the past decade indicate that $NO_2$ 1evels over China are rapidly increasing while those over Europe are decreasing. We also discussed potential application of spaceborne instruments in detecting and characterizing long-distance transport of $NO_2$.
Efforts for better understanding of the interaction between groundwater recharge and thermal regime of the subsurface medium is gaining momentum for its diverse applications in water resources. A numerical model is developed to simulate temperature variations of the subsurface under time varying groundwater recharge. The model utilizes MacCormack scheme for finite difference approximation of the partial differential equation describing the conductive and advective heat transport. For the estimation of recharge rate, optimization of the model is realized by searching for the unknown parameters which minimize the root-mean-square error between simulated and measured temperatures. Simulation results for 22-year time series data of temperature measurements reveal that the proposed model can accurately simulate subsurface temperature variations resulting from the redistribution of the heat due to the movement of water and it can also estimate temporal variations of recharge. Seasonal variations of recharge and a linear relationship between precipitation and recharge are clearly reflected in the simulated results.
It is critical to forecast the maximum daily and monthly demand for power with as little error as possible for our industry and national economy. In general, long-term forecasting of power demand has been studied from both the consumer's perspective and an econometrics model in the form of a generalized linear model with predictors. Time series techniques are used for short-term forecasting with no predictors as predictors must be predicted prior to forecasting response variables and containing estimation errors during this process is inevitable. In previous researches, seasonal exponential smoothing method, SARMA (Seasonal Auto Regressive Moving Average) with consideration to weekly pattern Neuron-Fuzzy model, SVR (Support Vector Regression) model with predictors explored through machine learning, and K-means clustering technique in the various approaches have been applied to short-term power supply forecasting. In this paper, SARMA and intervention model are fitted to forecast the maximum power load daily, weekly, and monthly by using the empirical data from 2011 through 2013. $ARMA(2,\;1,\;2)(1,\;1,\;1)_7$ and $ARMA(0,\;1,\;1)(1,\;1,\;0)_{12}$ are fitted respectively to the daily and monthly power demand, but the weekly power demand is not fitted by AREA because of unit root series. In our fitted intervention model, the factors of long holidays, summer and winter are significant in the form of indicator function. The SARMA with MAPE (Mean Absolute Percentage Error) of 2.45% and intervention model with MAPE of 2.44% are more efficient than the present seasonal exponential smoothing with MAPE of about 4%. Although the dynamic repression model with the predictors of humidity, temperature, and seasonal dummies was applied to foretaste the daily power demand, it lead to a high MAPE of 3.5% even though it has estimation error of predictors.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.