• 제목/요약/키워드: Search-Result Clustering

검색결과 75건 처리시간 0.027초

논문 검색 결과의 효과적인 브라우징을 위한 단어 군집화 기반의 결과 내 군집화 기법 (A Search-Result Clustering Method based on Word Clustering for Effective Browsing of the Paper Retrieval Results)

  • 배경만;황재원;고영중;김종훈
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권3호
    • /
    • pp.214-221
    • /
    • 2010
  • 검색 결과 내 군집화(search-result clustering)는 검색 엔진으로부터 검색된 결과 내에서 비슷한 문서를 자동으로 군집화하는 기법이다. 본 논문에서는 논문 검색 서비스에 전문화된 새로운 결과 내 군집화 기법을 제안한다. 제안하는 시스템은 '범주체계생성기(Category Hierarchy Generation System)'와 '논문군집기(Paper Clustering System)'로 구성되어있다. '범주체계생생기'는 KOSEF의 연구 범주 체계를 이용하여 분야 시소러스라 불리는 범주 체계를 생성하고, K-means 알고리즘을 이용한 단어 군집화 알고리즘을 사용하여 분야 시소러스의 키워드 집합을 확장한다. '논문군집기'는 top-down 방식과 bottom-up 방식을 이용하여 각 논문의 범주를 결정한다. 제안하는 시스템은 논문 검색 서비스와 같은 전문 분야에 대한 검색 서비스에 유용하게 사용될 수 있을 것이다.

국제특허분류 클러스터링을 이용한 특허 검색 시스템 (Patent Search System Using IPC Clustering)

  • 김한기;이석형;윤화묵
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2007년도 추계 종합학술대회 논문집
    • /
    • pp.103-106
    • /
    • 2007
  • 지적재산권의 중요성이 커지면서 특허 검색을 이용하는 일반 사용자의 숫자가 늘어나고 있다. 일반적으로 한 두개의 키워드만을 사용하는 일반 사용자의 검색 패턴을 고려할 때, 대량의 특허 문서에서 원하는 검색 결과를 찾는 일은 쉽지 않은 일이다. 이에 모든 특허 문서에서 제공되는 국제 특허 분류(IPC) 정보를 사용해서 사용자의 검색 결과를 클리스터링하여 보여주어 사용자가 검색하고자 하는 검색범위를 손쉽게 제한 할 수 있도록 도와주어 원하는 결과를 좀 더 빠르게 찾을 수 있는 특허 검색 시스템을 소개하고자 한다.

  • PDF

Semantic Conceptual Relational Similarity Based Web Document Clustering for Efficient Information Retrieval Using Semantic Ontology

  • Selvalakshmi, B;Subramaniam, M;Sathiyasekar, K
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권9호
    • /
    • pp.3102-3119
    • /
    • 2021
  • In the modern rapid growing web era, the scope of web publication is about accessing the web resources. Due to the increased size of web, the search engines face many challenges, in indexing the web pages as well as producing result to the user query. Methodologies discussed in literatures towards clustering web documents suffer in producing higher clustering accuracy. Problem is mitigated using, the proposed scheme, Semantic Conceptual Relational Similarity (SCRS) based clustering algorithm which, considers the relationship of any document in two ways, to measure the similarity. One is with the number of semantic relations of any document class covered by the input document and the second is the number of conceptual relation the input document covers towards any document class. With a given data set Ds, the method estimates the SCRS measure for each document Di towards available class of documents. As a result, a class with maximum SCRS is identified and the document is indexed on the selected class. The SCRS measure is measured according to the semantic relevancy of input document towards each document of any class. Similarly, the input query has been measured for Query Relational Semantic Score (QRSS) towards each class of documents. Based on the value of QRSS measure, the document class is identified, retrieved and ranked based on the QRSS measure to produce final population. In both the way, the semantic measures are estimated based on the concepts available in semantic ontology. The proposed method had risen efficient result in indexing as well as search efficiency also has been improved.

음렬 탐색을 위한 주제소절 자동분류에 관한 연구 (A Study on the Musical Theme Clustering for Searching Note Sequences)

  • 심지영;김태수
    • 정보관리학회지
    • /
    • 제19권3호
    • /
    • pp.5-30
    • /
    • 2002
  • 본 연구는 음악의 내용에 해당하는 음렬 패턴을 대상으로 분류자질을 선정하고 이를 기준으로 음렬간 유사도를 측정한 후 음렬간 군집을 형성하였다. 이는 내용기반음악검색 시스템에서 유사한 음렬을 검색 결과로 제시함으로써 이용자 탐색을 용이하게 하기 위함이다. 실험문헌집단으로는 $\ulcorner$A Dictionary of Musical Themes$\lrcorner$에 수록된 주제소절의 kern 형식 파일을 사용하였으며, 음렬 처리도구로는 Humdrum Toolkit version 1.0을 사용하였다. 음렬의 분절 여부와 시작 위치에 따른 네 가지 형태의 유사도 행렬을 대상으로 계층적 클러스터링 기법을 사용하여 유사한 음렬간 군집을 형성하였다. 이들 결과에 대한 평가는 외적 기준이 되는 수작업 분류표가 있는 경우 WACS 척도를 사용하였고, 음렬 내 임의의 위치에서부터 시작한 음렬을 대상으로 한 경우, 클러스터링 결과로부터 얻어낸 군집 내 공통 자질 패턴 분포를 통해 내적 기준을 마련하여 평가하였다. 평가 결과에 의하면 음렬의 시작 위치와 무관하게 분절한 자질을 사용하여 클러스터링한 결과가 그렇지 않은 것에 비해 뚜렷한 차이를 보이며 높게 나타났다.

웹마이닝을 위한 퍼지 클러스터링 알고리즘 (Fuzzy Clustering Algorithm for Web-mining)

  • 임영희;송지영;박대희
    • 한국지능시스템학회논문지
    • /
    • 제12권3호
    • /
    • pp.219-227
    • /
    • 2002
  • 웹 검색 엔진의 검색 결과를 클러스터링하는 후처리 클러스터링 알고리즘은 그 특성상 일반적인 클러스터링 알고리즘과는 다른 요구조건을 갖는다. 본 논문에서는 이러한 후처리 클러스터링 알고리즘의 요구조건들을 최대한 만족하는 새로운 클러스터링 알고리즘을 제안하고자 한다. 제안된 Fuzzy Concept ART는 무서 클러스터링에 있어 여러 가지 장점을 갖는 개념 벡터와 실시간 클러스터링 알고리즘으로 알려진 Fuzzy ART를 퍼지이론에 기반하여 결합한 형태로써, 후처리 클러스터링뿐 아니라 범용의 클러스터링 알고리즘으로도 응용이 가능하다.

An Improved Combined Content-similarity Approach for Optimizing Web Query Disambiguation

  • Kamal, Shahid;Ibrahim, Roliana;Ghani, Imran
    • 인터넷정보학회논문지
    • /
    • 제16권6호
    • /
    • pp.79-88
    • /
    • 2015
  • The web search engines are exposed to the issue of uncertainty because of ambiguous queries, being input for retrieving the accurate results. Ambiguous queries constitute a significant fraction of such instances and pose real challenges to web search engines. Moreover, web search has created an interest for the researchers to deal with search by considering context in terms of location perspective. Our proposed disambiguation approach is designed to improve user experience by using context in terms of location relevance with the document relevance. The aim is that providing the user a comprehensive location perspective of a topic is informative than retrieving a result that only contains temporal or context information. The capacity to use this information in a location manner can be, from a user perspective, potentially useful for several tasks, including user query understanding or clustering based on location. In order to carry out the approach, we developed a Java based prototype to derive the contextual information from the web results based on the queries from the well-known datasets. Among those results, queries are further classified in order to perform search in a broad way. After the result provision to users and the selection made by them, feedback is recorded implicitly to improve the web search based on contextual information. The experiment results demonstrate the outstanding performance of our approach in terms of precision 75%, accuracy 73%; recall 81% and f-measure 78% when compared with generic temporal evaluation approach and furthermore achieved precision 86%, accuracy 71%; recall 67% and f-measure 75% when compared with web document clustering approach.

군집 중심 기반 문헌 검색 결과의 시각화 (Visualization Method of Document Retrieval Result based on Centers of Clusters)

  • 지태창;이현진;이일병
    • 한국콘텐츠학회논문지
    • /
    • 제7권5호
    • /
    • pp.16-26
    • /
    • 2007
  • 기존의 문헌검색시스템은 검색 결과를 시각화하기 어렵기 때문에 문헌 제목과 검색어가 존재하는 부분에 대한 요약문을 보여주는 형태가 대부분이다. 이러한 방식은 문헌 검색 결과가 많은 경우 한 번에 문헌들을 살펴보는데 어려움이 있고, 문헌들간의 연관성을 알아보기 어렵다. 따라서, 본 논문에서는 웹 환경에 적합하도록 실시간으로 문헌 검색 결과를 시각화하는 방법을 제안하였다. 이를 위하여, 군집의 중심을 다차원 척도에 의해 저 차원 평면에 투사하는 단계와 오비탈 모형에 기반하여 개별 문헌들을 군집 중심을 기준으로 저 차원 평면에 표현하는 2단계 시각화 알고리즘을 제안하여, 문헌 군집의 관계를 쉽게 알아보고 개별 문헌들 사이의 유사성을 쉽게 확인할 수 있도록 하였다. 벤치마크 데이터와 실 데이터에 적용하여 실험하였으며, 실시간으로 검색 결과를 시각화 할 수 있다는 것을 실험을 통해 확인할 수 있었다.

Unification of Kohonen Neural network with the Branch-and-Bound Algorithm in Pattern Clustering

  • Park, Chang-Mok;Wang, Gi-Nam
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.134-138
    • /
    • 1998
  • Unification of Kohone SOM(Self-Organizing Maps) neural network with the branch-and-bound algorithm is presented for clustering large set of patterns. The branch-and-bound search technique is employed for designing coarse neural network learning paradaim. Those unification can be use for clustering or calssfication of large patterns. For classfication purposes further usefulness is possible, since only two clusters exists in the SOM neural network of each nodes. The result of experiments show the fast learning time, the fast recognition time and the compactness of clustering.

  • PDF

Effective Acoustic Model Clustering via Decision Tree with Supervised Decision Tree Learning

  • Park, Jun-Ho;Ko, Han-Seok
    • 음성과학
    • /
    • 제10권1호
    • /
    • pp.71-84
    • /
    • 2003
  • In the acoustic modeling for large vocabulary speech recognition, a sparse data problem caused by a huge number of context-dependent (CD) models usually leads the estimated models to being unreliable. In this paper, we develop a new clustering method based on the C45 decision-tree learning algorithm that effectively encapsulates the CD modeling. The proposed scheme essentially constructs a supervised decision rule and applies over the pre-clustered triphones using the C45 algorithm, which is known to effectively search through the attributes of the training instances and extract the attribute that best separates the given examples. In particular, the data driven method is used as a clustering algorithm while its result is used as the learning target of the C45 algorithm. This scheme has been shown to be effective particularly over the database of low unknown-context ratio in terms of recognition performance. For speaker-independent, task-independent continuous speech recognition task, the proposed method reduced the percent accuracy WER by 3.93% compared to the existing rule-based methods.

  • PDF