일 단위 강우-유출 모형인 SIMHYD와 TANK를 소양강댐과 영천댐 유역에 적용하여 유출을 예측하였다. 7개의 매개변수를 가진 SIMHYD와 17개의 변수를 가진 TANK모형을 국내 유역에 적용하여 모형의 적용성을 비교 평가하였다. 두 모형에 세 가지 목적함수를 달리하여 세 가지의 최적화 방법(유전자 알고리즘, Pattern Search MUlti-Start, Shuffled Complex Evolution Algorithm)을 적용하여 모형과 목적함수에 따른 관측 유출량에 대한 모의유출량의 모의 효율을 비교하였다. TANK모형의 모의 효율이 SIMHYD 모형의 모의 효율에 비해 높게 나타났다. 목적함수를 달리할 경우는 무차원 함수인 Nash-Sutcliffe 계수를 비교하는 것이 모델의 적용성을 평가하는데 적합한 것으로 평가되었다.
Molecular docking is a critical event which mostly forms Van der waals complex in molecular recognition. Since the majority of developed drugs are small molecules, docking them into proteins has been a prime concern in drug discovery community. Since the binding pose space is too vast to cover completely, many search algorithms such as genetic algorithm, Monte Carlo, simulated annealing, distance geometry have been developed. Proper evaluation of the quality of binding is an essential problem. Scoring functions derived from force fields handle the ligand binding prediction with the use of potential energies and sometimes in combination with solvation and entropy contributions. Knowledge-based scoring functions are based on atom pair potentials derived from structural databases. Forces and potentials are collected from known protein-ligand complexes to get a score for their binding affinities (e.g. PME). Empirical scoring functions are derived from training sets of protein-ligand complexes with determined affinity data. Because non of any single scoring function performs generally better than others, some other approaches have been tried. Although numerous scoring functions have been developed to locate the correct binding poses, it still remains a major hurdle to derive an accurate scoring function for general targets. Recently, consensus scoring functions and target specific scoring functions have been studied to overcome the current limitations.
The purpose of this study is to develop an effective iterative two-stage method (ITSM) for structural damage identification of offshore platform structures. In each iteration, a new damage index, Modal Energy-Based Damage Index (MEBI), is proposed to help effectively locate the potential damage elements in the first stage. Then, in the second stage, the beetle antenna search (BAS) algorithm is used to estimate the damage severity of these elements. Compared with the well-known particle swarm optimization (PSO) algorithm and genetic algorithm (GA), this algorithm has lower computational cost. A modal energy based objective function for the optimization process is proposed. Using numerical and experimental data, the efficiency and accuracy of the ITSM are studied. The effects of measurement noise and spatial incompleteness of mode shape are both considered. All the obtained results show that under these influences, the ITSM can accurately identify the true location and severity of damage. The results also show that the objective function based on modal energy is most suitable for the ITSM compared with that based on flexibility and weighted natural frequency-mode shape.
본 연구에서는 support vector regression (SVR) 및 매개변수 최적화 알고리즘을 이용한 하천수위 예측모델을 구축하고 이를 실제 유역에 적용하여 모델 효율성을 평가하였다. 여기서, SVR은 하천수위를 예측하기 위한 예측모델로서 채택되었으며, 커널함수 (Kernel function)로서는 radial basis function (RBF)을 선택하였다. 최적화 알고리즘은 SVR의 최적 매개변수 (C?, cost parameter or regularization parameter; ${\gamma}$, RBF parameter; ${\epsilon}$, insensitive loss function parameter)를 탐색하기 위하여 적용되었다. 매개변수 최적화 알고리즘으로는 grid search (GS), genetic algorithm (GA), particle swarm optimization (PSO), artificial bee colony (ABC) 알고리즘을 채택하였으며, 비교분석을 통해 최적화 알고리즘의 적용성을 평가하였다. 또한 SVR과 최적화 알고리즘을 결합한 모델 (SVR-GS, SVR-GA, SVR-PSO, SVR-ABC)은 기존에 수자원 분야에서 널리 적용되어온 신경망(Artificial neural network, ANN) 및 뉴로퍼지 (Adaptive neuro-fuzzy inference system, ANFIS) 모델과 비교하였다. 그 결과, 모델 효율성 측면에서 SVR-GS, SVR-GA, SVR-PSO 및 SVR-ABC는 ANN보다 우수한 결과를 나타내었으며, ANFIS와는 비슷한 결과를 나타내었다. 또한 SVR-GA, SVR-PSO 및 SVR-ABC는 SVR-GS보다 상대적으로 우수한 결과를 나타내었으며, 모델 효율성 측면에서 SVR-PSO 및 SVR-ABC는 가장 우수한 모델 성능을 나타내었다. 따라서 본 연구에서 적용한 매개변수 최적화 알고리즘은 SVR의 매개변수를 최적화하는데 효과적임을 확인할 수 있었다. SVR과 최적화 알고리즘을 이용한 하천수위 예측모델은 기존의 ANN 및 ANFIS 모델과 더불어 하천수위 예측을 위한 효과적인 도구로 사용될 수 있을 것으로 판단된다.
본 연구의 목적은 국내 및 국외 대학도서관 모바일 목록의 검색 인터페이스 현황조사와 설문지 조사방법에 의해 도출된 이용자 선호도를 분석하여 대학도서관 모바일 목록의 검색 인터페이스 설계 방안을 제안하는 것이다. 이를 위하여 기능성 평가 체크리스트를 통해 국내 대학도서관 82개 기관 모바일 목록의 검색 인터페이스 현황을 조사하였고, 국외 대학도서관 15개 기관 모바일 목록 검색 인터페이스의 기능 요소에 대한 시사점을 도출하였다. 또한 설문지법을 실시하여 대학도서관 이용자들의 모바일 목록 이용행태와 검색 인터페이스에 대한 선호도를 파악하였다.
복잡해진 최적화문제를 전통적인 방법보다 효율적으로 해결하기위해 유전알고리즘이나 개미군집화, 하모니서치알고리즘과 같은 다양한 메타휴리스틱이 개발되었다. 그 중에서 하모니 서치알고리즘이 다른 메타휴리스틱알고리즘보다 좋은 결과를 보이고 있다. 하모니 서치 알고리즘은 음악을 작곡할 때 아름다운 소리를 내는 하모니를 찾는 과정을 모방했다. 성능은 하모니 메모리에서 선택하는 비율인 HMCR값과 하모니 메모리에서 선택된 값의 조정 비율을 결정하는 PAR값에 따라 달라지는 것으로 알려져 있다. 다르게 말하면 두 변수의 기반이 되는 하모니 메모리의 사용방법의 문제로 볼 수 있다. 본 논문은 설정한 기간 동안 더 좋은 최적해를 찾지 못할 경우 하모니 메모리의 일부를 좋은 하모니로 구성되게 수정하는 방법을 제안했다. 테스트 함수를 이용한 검증 실험결과에서 하모니 메모리를 수정할 경우 정확도 변화가 적어 신뢰성 있는 정확도를 보였으며, Iteration이 짧더라도 최적값에 근접한 값을 찾았다.
여러 응용 분야에서 서버의 도움 없이 리더는 태그들의 그룹에 특정 태그가 존재하는지를 알 필요가 있다. 이것을 서버 없는 RFID 태그 검색(serverless RFID tag searching)이라 한다. 이를 위해 몇 개의 프로토콜이 제시되었다. 하지만 이들 프로토콜들은 한 번에 하나의 태그를 검색하는 단일 태그 검색 프로토콜이다. 본 논문에서는 해시함수와 난수 발생기에 기반하여 한 번에 여러 개의 태그를 검색할 수 있는 다중 태그 검색 프로토콜을 제안한다. 이를 위해, S3PR 프로토콜[1]의 문제점으로 지적된 통신 오류에 의한 시드의 동기화 문제를 해결하는 프로토콜을 제안하고, 이를 기반으로 통신량을 줄일 수 있는 다중 태그 검색 프로토콜을 제안한다. 제안된 프로토콜은 추적공격, 위장공격, 재생공격 및 서비스 거부 공격에 안전하다. 이 연구는 다중 태그 검색 프로토콜 개발의 기초가 될 것이다.
본 연구는 SSARR모형을 이용해 금강유역의 미호천 유역에 대하여 홍수모의예측을 수행하였다. 먼저 모형의 매개변수의 특성을 알고, 범위를 설정하기 위해 모형의 매개변수에 대한 민감도 분석을 실시하였다. 매개변수 보정을 위하여 유전자 알고리즘, 패턴탐색, SCE-UA등의 최적화 방법을 이용하였고, 목적함수로는 WSSR과 SSR를 적용하였으며, 최적화 방법과 목적함수에 따른 결과를 비교, 분석하였다. 본 연구 결과 최적화 방법으로는 패턴탐색이, 목적함수로는 WSSR을 사용하였을 때, 홍수 예측이 가장 정확하였다. 본 연구 결과를 활용하여 각 모형의 매개변수를 최적화한다면, 홍수 예측 및 홍수 예경보와 같은 의사결정에 유용하게 활용 될 수 있을 것이다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제4권4호
/
pp.575-594
/
2010
In this study, we propose a space search algorithm (SSA) and then introduce a hybrid optimization of fuzzy inference systems based on SSA and information granulation (IG). In comparison with "conventional" evolutionary algorithms (such as PSO), SSA leads no.t only to better search performance to find global optimization but is also more computationally effective when dealing with the optimization of the fuzzy models. In the hybrid optimization of fuzzy inference system, SSA is exploited to carry out the parametric optimization of the fuzzy model as well as to realize its structural optimization. IG realized with the aid of C-Means clustering helps determine the initial values of the apex parameters of the membership function of fuzzy model. The overall hybrid identification of fuzzy inference systems comes in the form of two optimization mechanisms: structure identification (such as the number of input variables to be used, a specific subset of input variables, the number of membership functions, and polyno.mial type) and parameter identification (viz. the apexes of membership function). The structure identification is developed by SSA and C-Means while the parameter estimation is realized via SSA and a standard least square method. The evaluation of the performance of the proposed model was carried out by using four representative numerical examples such as No.n-linear function, gas furnace, NO.x emission process data, and Mackey-Glass time series. A comparative study of SSA and PSO demonstrates that SSA leads to improved performance both in terms of the quality of the model and the computing time required. The proposed model is also contrasted with the quality of some "conventional" fuzzy models already encountered in the literature.
유전자 알고리즘은 탐색과 최적화 문제에 대한 효과적인 방법으로 이용되고 있으나 다수의 정점이 있는 다중정점 함수에 대한 응용에 있어서는 지역해에 조기 수렴하여 고착되는 등 전역 최적해를 찾는데 어려움이 있다. 이러한 문제는 탐색공간을 충분히 탐색할 수 있는 모집단의 다양성이 부족한 데 기인하는 것이며 해결방법으로 니칭 방법과 크라우딩 방법 등이 소개되고 있다. 개체군의 다양성을 증가시키는 방법으로 지역해에 고착되지 않고 전역 최적해로 수렴되도록 하는 데 기본을 두고 있다. 본 논문에서는 다중정점 함수의 전역 최적해에 수렴하고 수렴속도를 높이는 방법으로 진화과정의 매 세대마다 탐색영역에 충분히 분포되도록 임의로 생성된 보조 모집단을 공급함으로서 안정적으로 전역 최적해로 수렴하는 방법을 제안하였다. 컴퓨터 모의실험을 통하여 본 논문에서 제안한 방법을 입증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.