• Title/Summary/Keyword: Sealing materials

Search Result 329, Processing Time 0.026 seconds

Properties of new crack repair materials using organic and inorganic composites (유·무기 복합재료를 이용한 새로운 균열 보수재료의 특성)

  • Ahn, Tae-Ho;Bang, Sin-Young;Kim, Kyoung-Min;Sho, Kwang-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.228-229
    • /
    • 2015
  • In this research, properties of new crack repair materials using organic and inorganic composites (OAI) were investigated under various crack conditions. Especially, this study aims to develop new composites repair materials as needed to follow the crack and its repair method. Crack repair methods such as injection method and surface treatment repair method using self-healing capability for the practical industrial application were examined in comparison with normal crack repair method as a epoxy injection. From these results, it was confirmed that the sealing and injection effects through the cracks from field tests could be improved by OAI.

  • PDF

Simulation and Experiment of Elastomer Seal for Pneumatic Servo Cylinder

  • Hur, Shin;Song, Kyung Jun;Woo, Chang Su
    • Elastomers and Composites
    • /
    • v.50 no.4
    • /
    • pp.251-257
    • /
    • 2015
  • The rubber seal is a part inserted into servo cylinder to keep the air pressure constant. In order for efficient movements of the servo cylinder, the frictional coefficient of the rubber seal needs to be minimized while the sealing is maintained. In this work the friction characteristics of rubber seal specimen are tested on metal plate at various conditions. The experimental conditions include roughness level, applied pressure, lubrication, and rubbing speed. The design of experiment approach is taken to assess the effect of each parameter. The nonlinear frictional response of the rubber is applied to the FEM model simulating the servo cylinder movement. The result demonstrates that precise optimization of the servo cylinder movement must be preceded by preliminary experiments coupled with the theory and FEM model.

Microstructural Characterization of Composite Electrode Materials in Solid Oxide Fuel Cells via Image Processing Analysis

  • Bae, Seung-Muk;Jung, Hwa-Young;Lee, Jong-Ho;Hwang, Jin-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.86-91
    • /
    • 2010
  • Among various fuel cells, solid oxide fuel cells (SOFCs) offer the highest energy efficiency, when taking into account the thermal recycling of waste heat at high temperature. However, the highest efficiency and lowest pollution for a SOFC can be achieved through the sophisticated control of its constituent components such as electrodes, electrolytes, interconnects and sealing materials. The electrochemical conversion efficiency of a SOFC is particularly dependent upon the performance of its electrode materials. The electrode materials should meet highly stringent requirements to optimize cell performance. In particular, both mass and charge transport should easily occur simultaneously through the electrode structure. Matter transport or charge transport is critically related to the configuration and spatial disposition of the three constituent phases of a composite electrode, which are the ionic conducting phase, electronic conducting phase, and the pores. The current work places special emphasis on the quantification of this complex microstructure of composite electrodes. Digitized images are exploited in order to obtain the quantitative microstructural information, i.e., the size distributions and interconnectivities of each constituent component. This work reports regarding zirconia-based composite electrodes.

In vitro evaluation of a newly produced resin-based endodontic sealer

  • Song, Yoo-Seok;Choi, Yoorina;Lim, Myung-Jin;Yu, Mi-Kyung;Hong, Chan-Ui;Lee, Kwang-Won;Min, Kyung-San
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.3
    • /
    • pp.189-195
    • /
    • 2016
  • Objectives: A variety of root canal sealers were recently launched to the market. This study evaluated physicochemical properties, biocompatibility, and sealing ability of a newly launched resin-based sealer (Dia-Proseal, Diadent) compared to the existing root canal sealers (AHplus, Dentsply DeTrey and ADseal, Metabiomed). Materials and Methods: The physicochemical properties of the tested sealers including pH, solubility, dimensional change, and radiopacity were evaluated. Biocompatibility was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. For microleakage test, single-rooted teeth were instrumented, and obturated with gutta-percha and one of the sealers (n = 10). After immersion in 1% methylene blue solution for 2 weeks, the specimens were split longitudinally. Then, the maximum length of staining was measured. Statistical analysis was performed by one-way analysis of variance followed by Tukey test (p = 0.05). Results: Dia-Proseal showed the highest pH value among the tested sealers (p < 0.05). ADseal showed higher dimensional change compared to AHplus and Dia-Proseal (p < 0.05). The solubility values of AHplus and Dia-Proseal were similar, whereas ADseal had the lowest solubility value (p < 0.05). The flow values of sealer in increasing order were AHplus, DiaProseal, and ADseal (p < 0.05). The radiopacity of AHplus was higher than those of ADseal and Dia-Proseal (p < 0.05). The cell viability of the tested materials was statistically similar throughout the experimental period. There were no significant differences in microleakage values among the tested samples. Conclusions: The present study indicates that Dia-Proseal has acceptable physicochemical properties, biocompatibility, and sealing ability.

Characterization of Three Antifungal Calcite-Forming Bacteria, Arthrobacter nicotianae KNUC2100, Bacillus thuringiensis KNUC2103, and Stenotrophomonas maltophilia KNUC2106, Derived from the Korean Islands, Dokdo and Their Application on Mortar

  • Park, Jong-Myong;Park, Sung-Jin;Ghim, Sa-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1269-1278
    • /
    • 2013
  • Crack remediation on the surface of cement mortar using microbiological calcium carbonate ($CaCO_3$) precipitation (MICP) has been investigated as a microbial sealing agent on construction materials. However, MICP research has never acknowledged the antifungal properties of calcite-forming bacteria (CFB). Since fungal colonization on concrete surfaces can trigger biodeterioration processes, fungi on concrete buildings have to be prevented. Therefore, to develop a microbial sealing agent that has antifungal properties to remediate cement cracks without deteriorative fungal colonization, we introduced an antifungal CFB isolated from oceanic islands (Dokdo islands, territory of South Korea, located at the edge of the East Sea in Korea.). The isolation of CFB was done using B4 or urea-$CaCl_2$ media. Furthermore, antifungal assays were done using the pairing culture and disk diffusion methods. Five isolated CFB showed $CaCO_3$ precipitation and antifungal activities against deteriorative fungal strains. Subsequently, five candidate bacteria were identified using 16S rDNA sequence analysis. Crack remediation, fungi growth inhibition, and water permeability reduction of antifungal CFB-treated cement surfaces were tested. All antifungal CFB showed crack remediation abilities, but only three strains (KNUC2100, 2103, and 2106) reduced the water permeability. Furthermore, these three strains showed fungi growth inhibition. This paper is the first application research of CFB that have antifungal activity, for an eco-friendly improvement of construction materials.

Hermetic Characteristics of Negative PR (Negative PR의 기밀 특성)

  • Choi, Eui-Jung;Sun, Yong-Bin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.2 s.15
    • /
    • pp.33-36
    • /
    • 2006
  • Many issues arose to use the Pb-free solder as adhesive materials in MEMS ICs and packaging. Then this study for easy and simple sealing method using adhesive materials was carried out to maintain hermetic characteristic in MEMS Package. In this study, Hermetic characteristic using negative PR (XP SU-8 3050 NO-2) as adhesive at the interface of Si test coupon/glass substrate and Si test coupon/LTCC substrate was examined. For experiment, the dispenser pressure was 4 MPa and the $200\;{\mu}m{\Phi}$ syringe nozzle was used. 3.0 mm/sec as speed of dispensing and 0.13 mm as the gap between Si test coupon and nozzle was selected to machine condition. 1 min at $65^{\circ}C$ and 15 min at $95^{\circ}C$ as Soft bake, $200\;mj/cm^2$ expose in 365 nm wavelength as UV expose, 1 min at $65^{\circ}C$ and 6 min at $95^{\circ}C$ as Post expose bake, 60 min at $150^{\circ}C$ as hard bake were selected to activation condition of negative PR. Hermetic sealing was achieved at the Si test coupon/ glass substrate and Si test coupon/LTCC substrate. The leak rate of Si test coupon/glass substrate was $5.9{\times}10^{-8}mbar-l/sec$, and there was no effect by adhesive method. The leak rate of Si test coupon/LTCC substrate was $4.9{\times}10^{-8}mbar-l/sec$, and there was no effect by dispensing cycle. Better leak rate value could be achieved to use modified substrate which prevent PR flow, to increase UV expose energy and to use system that controls gap automatically with vision.

  • PDF

Study on Reliability of Vapor Cell by Laser Packaging with Au/Au-Sn Heterojunction (Au/Au-Sn 이종접합 적용 레이저 패키징을 통한 Vapor Cell 신뢰성 연구)

  • Kwon, Jin Gu;Jeon, Yong Min;Kim, Ji Young;Lee, Eun Byeol;Lee, Seong Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.367-372
    • /
    • 2020
  • As packaging processes for atomic gyroscope vapor cells, the glass tube tip-off process, anodic bonding, and paste sealing have been widely studied. However, there are stability issues in the alkali metal which are caused by impurity elements and leakage during high-temperature processes. In this study, we investigated the applicability of a vapor cell low-temperature packaging process by depositing Au on a Pyrex cell in addition to forming an Au-Sn thin film on a cap to cover the cell, followed by laser irradiation of the Au/Au-Sn interface. The mechanism of the thin film bonding was evaluated by XRD, while the packaging reliability of an Ne gas-filled vapor cell was characterized by variation of plasma discharge behavior with time. Furthermore, we confirmed that the Rb alkaline metal inside the vapor cell showed no color change, indicating no oxidation occurred during the process.

Vacuum Packaging and Operating Properties of Micro-Tunneling Sensors

  • Park, H.W.;Lee, D.J.;Son, Y. B.;Park, J.H.;Oh, M. H.;Ju, B. K.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.110-110
    • /
    • 2000
  • Cantilever-shaped lateral field emitters were fabricated and their electrical characteristics were tested. As shown in Fig.1, poly-silicon cantilevers were fabricated by the surface micromachining and they were used to the vacuum magnetic field sensors. The tunneling devices were vacuum sealed with the tubeless packaging method, as shown in Fig.2 and Fig.3. The soda-lime glasses were used for better encapsulation, so the sputtered silicon and the glass layers on the soda-lime glasses were bonded together at 1x10$^{-6}$ Torr. The getter was activated after the vacuum sealing fur the stable emissions. The devices were tested outside of the vacuum chamber. Through vacuum packaging, the tunneling sensors can be utilized. Fig.4 shows that the sensor operates with the switching of the magnetic field. When the magnetic field was applied to the device, the anode currents were varied by the Lorentz force. The difference of anode currents can be varied with the strength of the applied magnetic field.

  • PDF

Survivability assessment of Viton in safety-related equipment under simulated severe accident environments

  • Ryu, Kyungha;Song, Inyoung;Lee, Taehyun;Lee, Sanghyuk;Kim, Youngjoong;Kim, Ji Hyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.683-689
    • /
    • 2018
  • To evaluate equipment survivability of the polymer Viton, used in sealing materials, the effects of its thermal degradation were investigated in severe accident (SA) environment in a nuclear power plant. Viton specimens were prepared and thermally degraded at different SA temperature profiles. Changes in mechanical properties at different temperature profiles in different SA states were investigated. The thermal lag analysis was performed at calculated convective heat transfer conditions to predict the exposure temperature of the polymer inside the safety-related equipment. The polymer that was thermally degraded at postaccident states exhibited the highest change in its mechanical properties, such as tensile strength and elongation.

Mo-Mn Metallizing on Sintered Alumina and It합s Bond Strength (소결 알루미나의 금속접합 및 접합강도에 관한 연구)

  • Lee, Joon;Kim, Young-Tai;Jang, Sung-Do;Son, Yong-Bae
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.6
    • /
    • pp.58-70
    • /
    • 1985
  • The bond strength of metal to ceramic sealing in Mo-Mn metallizing was investigated by examining the effects of flux composition in alumina ceramics particle size of molybdenum metal powder wet hydrogen atmosphere and temperature in metallizing. The maximum bond strength was obtained when the glass phase filled almost all the microstructural cavities around the interfacial area with few micropores. Such a favorable microstrcutre waas formed and maximum bond strength was observed between 130$0^{\circ}C$. Also the metal to ceramic bond strength was increased using finer molybdenum metal powder than coarse powder. When content of $SiO_2$ in the flux of alumina ceramics was constant metal to ceramic bond strength was improved with increasing the ratio of CaO to MgO in the flux.

  • PDF