DOI QR코드

DOI QR Code

Study on Reliability of Vapor Cell by Laser Packaging with Au/Au-Sn Heterojunction

Au/Au-Sn 이종접합 적용 레이저 패키징을 통한 Vapor Cell 신뢰성 연구

  • Kwon, Jin Gu (Department of Materials Engineering, Korea Polytechnic University) ;
  • Jeon, Yong Min (Department of Materials Engineering, Korea Polytechnic University) ;
  • Kim, Ji Young (Department of Materials Engineering, Korea Polytechnic University) ;
  • Lee, Eun Byeol (Department of Materials Engineering, Korea Polytechnic University) ;
  • Lee, Seong Eui (Department of Materials Engineering, Korea Polytechnic University)
  • 권진구 (한국산업기술대학교 신소재공학과) ;
  • 전용민 (한국산업기술대학교 신소재공학과) ;
  • 김지영 (한국산업기술대학교 신소재공학과) ;
  • 이은별 (한국산업기술대학교 신소재공학과) ;
  • 이성의 (한국산업기술대학교 신소재공학과)
  • Received : 2020.05.18
  • Accepted : 2020.07.01
  • Published : 2020.09.01

Abstract

As packaging processes for atomic gyroscope vapor cells, the glass tube tip-off process, anodic bonding, and paste sealing have been widely studied. However, there are stability issues in the alkali metal which are caused by impurity elements and leakage during high-temperature processes. In this study, we investigated the applicability of a vapor cell low-temperature packaging process by depositing Au on a Pyrex cell in addition to forming an Au-Sn thin film on a cap to cover the cell, followed by laser irradiation of the Au/Au-Sn interface. The mechanism of the thin film bonding was evaluated by XRD, while the packaging reliability of an Ne gas-filled vapor cell was characterized by variation of plasma discharge behavior with time. Furthermore, we confirmed that the Rb alkaline metal inside the vapor cell showed no color change, indicating no oxidation occurred during the process.

Keywords

References

  1. M. Succi, R. Canino, and B. Ferrario, Vacuum, 35, 579 (1985). [DOI: https://doi.org/10.1016/0042-207X(85)90319-7]
  2. D. G. Theodorou, R. O. McIntosh, T. H. Conklin, and K. C. Earl, Vacuum, 16, 237 (1966). [DOI: https://doi.org/10.1016/0042-207X(66)92713-8]
  3. S. J. Jung, K. J. Woo, N. Y. Lee, S. Ahn, G. J. Moon, K. S. Kim, and M. S. Kim, J. Korean Vac. Sci. Technol., 3, 95 (1999).
  4. W. B. Choi, B. K. Ju, Y. H. Lee, J. W. Jeong, M. R. Haskard, N. Y. Lee, M. Y. Sung, and M. H. Oh, J. Micromech. Microeng., 7, 316 (1997). [DOI: https://doi.org/10.1088/0960-1317/7/4/007]
  5. A.C.A. Muller, K. L. Scrivener, J. Skibsted, A. M. Gajewicz, and P. J. McDonald, Cem. Concr. Res., 74, 116 (2015). [DOI: https://doi.org/10.1016/j.cemconres.2015.04.005]
  6. N. Arora and B. R. Jagirdar, Phys. Chem. Chem. Phys., 16, 11381 (2014). [DOI: https://doi.org/10.1039/c4cp00249k]
  7. Z. Fang, X. Mao, J. Yang, and F. Yang, J. Micromech. Microeng., 23, 095008 (2013). [DOI: https://doi.org/10.1088/0960-1317/23/9/095008]
  8. M. L. Huang, F. F. Huang, J. L. Pan, and T. X. Zhang, J. Mater. Sci.: Mater. Electron., 25, 4933 (2014). [DOI: https://doi.org/10.1007/s10854-014-2254-y]
  9. K. Yu, T. Yao, Z. Pan, S. Wei, and Y. Xie, Dalton Trans., 46, 10353 (2009). [DOI: https://doi.org/10.1039/b916215a]
  10. Y. Zhang and D. G. Ivey, Proc. 2003 International Conference on Compound Semiconductor Mfg. (GaAsMANTECH, Inc., 2003) p. 2.
  11. K. Nogita, C. M. Gourlay, S. D. McDonald, S. Suenaga, J. Read, G. Zeng, and Q. F. Gu, J. Philos. Mag., 93, 3627, (2013). [DOI: https://doi.org/10.1080/14786435.2013.820381]
  12. W. S. Boyle and P. Kisliuk, Phys. Rev., 97, 255 (1955). [DOI: https://doi.org/10.1103/PhysRev.97.255]
  13. J. C. Biswas and V. Mitra, Appl. Phys., 19, 377 (1979). [DOI: https://doi.org/10.1007/BF00930100]