• Title/Summary/Keyword: Sea Wave

Search Result 1,219, Processing Time 0.021 seconds

A Study on the Development of the Collision Prevention System for Aids to Navigation by Early Identification of the Tug Boat (예인선 조기 식별을 통한 항로표지시설 추돌 방지 시스템 개발 연구)

  • Han, Ju-Seop;Yu, Yong-Su;Park, Tae-Keun;Kim, Hwa-Young
    • Journal of Navigation and Port Research
    • /
    • v.43 no.6
    • /
    • pp.437-443
    • /
    • 2019
  • Aid to navigation is a navigational aid facility that informs a sailing vessel of its location and direction as well as a location of a specific obstacle by means of a light, shape, color, sound, radio wave, etc. It can be valuable in improving the safety of day and night vessel navigation at sea. For the safety of the tug boat, the minimum equipment requirements for each type of tug boat are arranged. Despite these preparations, the collision accidents between tug boats, barges, and light buoys can occur when the tug boat turns due to the length of the tow-line, tidal current, and the barge's momentum etc. The purpose of this study was to propose the basic system that analyzes the physical relationship between two vessels regarding the tug boat-barge-light buoy dynamics and propagate the corresponding data through the aid to navigation management & operation systems in use at each regional oceans and fisheries.

Analysis of the Effects on the Southeastern Coast of Korea by a Tsunami Originating from Hypothetical Earthquake in Japan (일본 지진공백역에서의 지진해일이 우리나라의 남동연안에 미치는 영향분석)

  • Kim, Do-Sam;Kim, Ji-Min;Lee, Kwang-Ho;Son, Byoung-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.6
    • /
    • pp.64-71
    • /
    • 2007
  • The hypothetical earthquake located on the fault zone along the western coast of Japan, where sufficient time has elapsed since the last earthquake or an earthquake has not occurred yet, is known to possess significant potential energy. The possibility of earthquake activities occurring here in the future is high. It is expected that the resulting tsunamis will cause great damage to the East Sea coast of Korea and affect parts of the southern coast as well. In this study, tsunami that may be caused by a virtual earthquake that is expected in the hypothetical earthquake, along the western coast of Japan, will be estimated using numerical simulation. From this, the effect of the tsunami originating from the hypothetical earthquake on the southeastern coast of Korea will be evaluated by examining the water level rise due to the maximum water level rise and changing time, for each point along the southeastern coast. It will be possible to use the virtual results obtained like this as important basic materials in future disaster prevention plans and designs, for determining the direction of coastal development, for arranging seashore and harbor structures and to carry out wave resistant design for the southeastern coast of Korea.

Evaluation of Foil Strength by Full Scale Strain Measurement (실선 계측에 의한 수중익 강도 평가)

  • I.H. Choe;K.Y. Chung;O.H. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.3
    • /
    • pp.37-43
    • /
    • 1995
  • The procedure and the results of the full scale strain measurement of the long-range high-speed foil catamaran are described. The wave induced stresses at the center struts of the foils were measured during the sea trials in order to evaluate the hydrodynamic force acting on the foils and to verify the structural safety of the foil structures. From the statistical properties of the measured response of the stress, the most probable maximum values of the lift force and the stresses at the foils in service life of the ship are predicted and compared with the design parameters of the foils which were applied in the design of the subject ship. The available prediction processes of the measured stress are studied and the results of the applied processes are compared with each other.

  • PDF

Hydroelastic Responses for a VLFS close to a Breakwater by the Velocity Potential Continuation and Singularity Distribution Method (속도포텐셜접속법과 특이점분포법에 의한 방파제에 근접한 부유식 해상공항에 대한 유탄성 응답 해석)

  • Ho-Young Lee;Young-Ki Kwak;Jong-Hwan Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.2
    • /
    • pp.11-18
    • /
    • 2002
  • In this paper, the method calculating hydroelastic responses of very large floating structure close to a breakwater in waves is presented. The source-dipole distribution method is used to calculate the generalized radiation problem considering breakwater effects and the diffraction problem is analyzed by using the source-dipole distribution andvelocity potential continuation method. The response of a VLFS is approximated by anexpansion in terms of a free-free beam. Calculated model is a VLFS with 1000m in length in a sea with a straight breakwater. The vertical displacements and bonding moments around a VLFS are calculated by variations for distance between a VLFS and a breakwater and incident wave angle to know the effect of a breakwater.

Prediction Model and Numerical Simulation of the Initial Diffusion of Spilled Oil on the Sea Surface (해상누유의 초기확산 예측모델 및 수치추정)

  • Yoon, B.S.;Song, J.U.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.2
    • /
    • pp.104-110
    • /
    • 1997
  • Increase of marine transpotation in coastal area frequently yields oil spill accidents due to collision or grounding of oil tankers, which affects great deal of damages on ocean environments. Exact prediction of oil pollution area in time domain, which is called oil map, is very important for effective and efficient oil recovery and minimization of environmental damage. The prediction is carried out by considering the two distinct processes which are initial diffusion on the still water surface and advection due to tide, wind wave induced surface currents. In the present paper, only the initial diffusion is dealt with. Somewhat new simulation model and its numerical scheme are proposed to predict it. Simple diffusion experiment is also carried out to check the validity of the present method. Furthermore, some example simulations are performed for virtual oil spill accident. Quite realistic oil map including oil thickness distributions can be obtained by the present model.

  • PDF

Computational and Experimental Studies on Added Resistance of AFRAMAX-Class Tankers in Head Seas (선수파 중 AFRAMAX급 유조선의 부가저항에 대한 실험과 수치계산)

  • Oh, Seunghoon;Yang, Jinho;Park, Sang-Hun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.6
    • /
    • pp.471-477
    • /
    • 2015
  • When a ship sails in a seaway, the resistance on a ship increases due to incident waves and winds. The magnitude of added resistance amounts to about 15–30% of a calm-water resistance. An accurate prediction of added resistance in waves, therefore, is essential to evaluate the performance of a ship in a real sea state and to design an optimum hull form from the viewpoint of the International Maritime Organization (IMO) regulations such as Energy Efficiency Design Index (EEDI) and Energy Efficiency Operational Indicator (EEOI). The present study considers added resistance problem of AFRAMAX-class tankers with the conventional bow and Ax-bow shapes. Added resistance due to waves is successfully calculated using 1) a three-dimensional time-domain seakeeping computations based on a Rankine panel method (three-dimensional panel) and 2) a commercial CFD program (STAR-CCM+). In the hydrodynamic computations of a three-dimensional panel method, geometric nonlinearity is accounted for in Froude-Krylov and restoring forces using simple wave corrections over exact wet hull surface of the tankers. Furthermore, a CFD program is applied by performing fully nonlinear computation without using an analytical formula for added resistance or empirical values for the viscous effect. Numerical computations are validated through four degree-of-freedom model-scale seakeeping experiments in regular head waves at the deep towing tank of Hyundai Heavy Industries.

A Study on Design of Offshore Meteorological Tower (해상기상탑 설계에 관한 연구)

  • Moon, Chae-Joo;Chang, Young-Hak;Park, Tae-Sik;Jeong, Moon-Seon;Joo, Hyo-Joon;Kwon, O-Soon;Kwag, Dae-Jin;Jeong, Gwon-Seong
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.60-65
    • /
    • 2014
  • A meteorological(met) tower is the first structure installed during the planning stages of offshore wind farm. The purpose of this paper is to design the met tower with tripod bucket type support structure and to install the sensors. The support structure consist of a central steel shaft connected to three cylindrical steel suction buckets which is more cheaper than monopile or jacket type. And the remote wind condition sensors and marine monitoring equipment, including adcp, pressure type tide gauge, wave height sensors, and scour sensors, remote power supply are installed. The manufactured met tower constructed on sea area which is in front of Gasa island. All of functions of met tower showed normal operation conditions and the wind data got by remote data collection system successfully.

Sensitivity Analysis According to Fault Parameters for Probabilistic Tsunami Hazard Curves (단층 파라미터에 따른 확률론적 지진해일 재해곡선의 민감도 분석)

  • Jho, Myeong Hwan;Kim, Gun Hyeong;Yoon, Sung Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.368-378
    • /
    • 2019
  • Logic trees for probabilistic tsunami hazard assessment include numerous variables to take various uncertainty on earthquake generation into consideration. Results from the hazard assessment vary in different way as more variables are considered in the logic tree. This study is conducted to estimate the effects of various scaling laws and fault parameters on tsunami hazard at the nearshore of Busan. Active fault parameters, such as strike angle, dip angle and asperity, are adjusted in the modelling of tsunami propagation, and the numerical results are used in the sensitivity analysis. The influence of strike angle to tsunami hazard is not as much significant as it is expected, instead, dip angle and asperity show a considerable impact to tsunami hazard assessment. It is shown that the dip angle and the asperity which determine the initial wave form are more important than the strike angle for the assessment of tsunami hazard in the East Sea.

Current Speed Measurements by Using Ocean Acoustic Tomography of Reciprocal Sound Transmission in the Southern Water of Koje Island (거제도 남쪽해역에서 쌍방향 음파전파 해양음향 토모그래피를 이용한 유속측정)

  • Byun, Sang-Kyung;Kim, Bong-Chae;Cnoi, Bok-Kyoung;Kaneko, Arata;Gohda, Noriaki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.3
    • /
    • pp.161-169
    • /
    • 1999
  • In order to investigate the validity of acoustic tomography for current measurement, an experiment of reciprocal sound transmission was conducted in April, 1997 in the southern water of Koje island. This experiment was attempted as a preliminary field study on coastal ocean acoustic tomography for construction of real-time current observation system. Examining the physical oceanography environments, the current data obtained by travel time difference of reciprocal sound wave was compared with the data of Acoustic Doppler Current Profiler (ADCP). The result shows the correlation coefficient of 0.943, very good relation between the two data, and therefore the ocean acoustic tomography could be a useful method for current measurement in the coastal area.

  • PDF

Sliding Mode Fuzzy Control for Wind Vibration Control of Tall Building (Sliding Mode Fuzzy Control을 사용한 바람에 의한 대형 구조물의 진동제어)

  • 김상범;윤정방
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.79-83
    • /
    • 2000
  • A sliding mode fuzzy control (SMFC) with disturbance estimator is applied to design a controller for the third generation benchmark problem on an wind-excited building. A distinctive feature in vibration control of large civil infrastructure is the existence of large disturbances, such as wind, earthquake, and sea wave forces. Those disturbances govern the behavior of the structure, however, they cannot be precisely measured, especially for the case of wind-induced vibration control. Since the structural accelerations are measured only at a limited number of locations without the measurement of the wind forces, the structure of the conventional control may have the feed-back loop only. General structure of the SMFC is composed of a compensation part and a convergent part. The compensation part prevents the system diverge, and the convergent part makes the system converge to the sliding surface. The compensation part uses not only the structural response measurement but also the disturbance measurement, so the SMFC has a feed-back loop and a feed-forward loop. To realize the virtual feed-forward loop for the wind-induced vibration control, disturbance estimation filter is introduced. the structure of the filter is constructed based on an auto regressive model for the stochastic wind force. This filter estimates the wind force at each time instance based on the measured structural responses and the stochastic information of the wind force. For the verification of the proposed algorithm, a numerical simulation is carried out on the benchmark problem of a wind-excited building. The results indicate that the present control algorithm is very efficient for reducing the wind-induced vibration and that the performance indices improve as the filter for wind force estimation is employed.

  • PDF