• Title/Summary/Keyword: Sea

Search Result 18,063, Processing Time 0.045 seconds

Temporal and Spatial Distribution of Benthic Polychaetous Communities in Seomjin River Estuary (섬진강 하구역 저서다모류군집의 시·공간 분포)

  • Kang, Sung Hyo;Lee, Jung Ho;Park, Sung Wan;Shin, Hyun Chool
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.4
    • /
    • pp.243-255
    • /
    • 2014
  • This study was investigated to estimate the relations between benthic environments and benthic polychaetous community from April 2012 to February 2013. Twenty four stations were selected sequentially with Seomjin River Estuary from the northern part of Gwangyang Bay. The study area could be divided into three characteristic zones based on salinity, water temperature, dissolved oxygen and pH such as Saline Water Zone (SWZ), Brackish Water Zone (BWZ), and Fresh Water Zone (FWZ). Salinity was above 30.0 psu in SWZ, drastically decreased toward inland in BWZ, and nearly zero psu in FWZ. SWZ showed its specific environmental characters like that water temperature fluctuated with little seasonal change and DO showed the lowest values among three zones, and pH maintained as consistent value without seasonal fluctuation. In FWZ, on the other hand, water temperature showed high seasonal fluctuation, DO showed the highest values among three zones, and pH fluctuated greatly. In sedimentary environment, mud, sand and sand/gravel were found as dominant sedimentary deposits in SWZ, BWZ and FWZ, respectively. Organic matter content and AVS in surface sediment were high in SWZ, while Chl-a content high in FWZ. This study area showed a marked environmental difference between FWZ and SWZ as follows: FWZ has coarse sediment and low salinity, low organic matter content, low AVS in FWZ but SWZ has fine sediment and high salinity, high organic matter content and AVS. Species number and mean density of benthic polychaete community was highest in Saline Water Zone (SWZ), drastically decreased in Brackish Water Zone (BWZ), and lowest in Fresh Water Zone (FWZ). Dominant polychates above 5.0% of individual numbers were 6 taxa. Lumbrineris longifolia, Prionospio cirrifera, Tharyx sp. occurred as main dominant species of all study periods, and Hediste sp., Praxillella affinis, Tylorrhynchus sp. dominantly occurred at some seasons. Inhabiting areas of dominant species were separated characteristically. Representative species in SWZ were Lumbrineris longifolia, Tharyx sp., Mediomastus sp.. Wide-appearing species between SWZ and BWZ were Prionospio cirrifera, Heteromastus filiformis, Aricidea sp.. Characteristic species in FWZ were Tylorrhynchus sp. and Hediste sp.. As the results of cluster analysis and nMDS based on the species composition of polychaetous community, unique station groups were established in SWZ and FWZ. Stations in BWZ were sub-divided into several groups with season. Pearson's correlation analysis and PCA between benthic environments and ecological characteristics of polychaetous community showed that salinity, sediment composition, organic content and dissolved oxygen played a role to determine the temporal and spatial distribution of the ecological characteristics as species number, mean density, abundance of main species, and ecological indices.

The Value and Growing Characteristics of the Dicentra Spectabilis Community in Daea-ri, Wanju-gun, Jeollabuk-do as a Nature Reserve (전북 완주군 대아리 금낭화 Dicentra spectabilis 군락지의 천연보호구역적 가치와 생육특성)

  • Lee, Suk Woo;Rho, Jae Hyun;Oh, Hyun Kyung
    • Korean Journal of Heritage: History & Science
    • /
    • v.44 no.1
    • /
    • pp.72-105
    • /
    • 2011
  • This study explores the value of the Dicentra spectabilis community as a nature reserve in provincial forests at San 1-2, Daea-ri, Dongsang-myeon, Wanju-gun, Jellabuk-do, also known as Gamakgol, while defining the appropriateness of its living environment and eventually providing basic information to protect this area. For these reasons, we investigated 'morphological and biological features of Dicentra spectabilis' and the 'present situation and problems of designing a herbaceous nature reserve in Korea.' Furthermore, we researched and analyzed the solar, soil and vegetation condition here through a field study in order to comprehend its nature reserve value. The result is as follows. According to the analytic result for information on the domestic wild Dicentra spectabilis community, it is evenly spread throughout mountainous areas, and there is one particularly outstanding in size in Wanju Gamakgol. Upon the findings from literature and the field study about its dispersion, Gamakgol has been discovered as an ideal district for Dicentra spectabilis since it meets all the conditions this plant requires to grow vigorously, such as a quasi-high altitude and rich precipitation during its period of active growth duration in May. Dicentra spectabilis grows in rocky soil ranging from 300~375m above sea level, 344.5m on average, towards the north, northwest and dominantly in the northeast. The mean inclination degree is $19.5^{\circ}$. Also, upon findings from analyzing solar conditions, the average light intensity during its growth duration, from Apr. to Aug., is 30,810lux on average and it tends to increase, as it gets closer to the end. This plant requires around 14,000~18,000lux while growing, but once bloomed, fruits develop regardless of the degree of brightness. The soil pH has shown a slight difference between the topsoil, at 5.2~6.1, and subsoil, at 5.2~6.2. Its mean pH is 5.54 for topsoil and 5.58 for subsoil. These results are very typical for Dicentra spectabilis to grow in, and other comparative areas also present similar conditions. Given the facts, the character of the soil in Gamakgol has been evaluated to have high stability. Analysis of its vegetation environment shows a wide variation of taxa numbering from 13 to 52 depending on area. The total number of taxa is 126 and they are a homogenous group while showing a variety of species as well. The Dicentra spectabilis community in the Daea-ri Arboretum is an herbaceous community consisting of dominantly Dicentra spectabilis, Cardamine leucantha, Boehmeria tricuspi and Impatiens textori while having many differential species such as Impatiens textori, Pueraria thunbergiana, Rubus crataegifolius vs Staphylea bumalda, Securinega suffruticosa, and Actinidia polygama. It suggests that it is a typical subcolony divided by topographic features and soil humidity. Considering the above results on a comprehensive level, this area is an excellent habitat for wild Dicentra spectabilis providing beautiful viewing enjoyment. Additionally, it is the largest wild colony of Dicentra spectabilis in Korea whose climate, topography, soil conditions and vegetation environment can secure sustainability as a wild habitat of Dicentra spectabilis. Therefore, We have determined that the Gamakgol community should be re-examined as natural asset owing to its established habitat conditions and sustainability.

Dedicatory Inscriptions on the Amitabha Buddha and Maitreya Bodhisattva Sculptures of Gamsansa Temple (감산사(甘山寺) 아미타불상(阿彌陁佛像)과 미륵보살상(彌勒菩薩像) 조상기(造像記)의 연구)

  • Nam, Dongsin
    • MISULJARYO - National Museum of Korea Art Journal
    • /
    • v.98
    • /
    • pp.22-53
    • /
    • 2020
  • This paper analyzes the contents, characteristics, and historical significance of the dedicatory inscriptions (josanggi) on the Amitabha Buddha and the Maitreya Bodhisattva statues of Gamsansa Temple, two masterpieces of Buddhist sculpture from the Unified Silla period. In the first section, I summarize research results from the past century (divided into four periods), before presenting a new perspective and methodology that questions the pre-existing notion that the Maitreya Bodhisattva has a higher rank than the Amitabha Buddha. In the second section, through my own analysis of the dedicatory inscriptions, arrangement, and overall appearance of the two images, I assert that the Amitabha Buddha sculpture actually held a higher rank and greater significance than the Maitreya Bodhisattva sculpture. In the third section, for the first time, I provide a new interpretation of two previously undeciphered characters from the inscriptions. In addition, by comparing the sentence structures from the respective inscriptions and revising the current understanding of the author (chanja) and calligrapher (seoja), I elucidate the possible meaning of some ambiguous phrases. Finally, in the fourth section, I reexamine the content of both inscriptions, differentiating between the parts relating to the patron (josangju), the dedication (josang), and the prayers of the patrons or donors (balwon). In particular, I argue that the phrase "for my deceased parents" is not merely a general axiom, but a specific reference. To summarize, the dedicatory inscriptions can be interpreted as follows: when Kim Jiseong's parents died, they were cremated and he scattered most of their remains by the East Sea. But years later, he regretted having no physical memorial of them to which to pay his respects. Thus, in his later years, he donated his estate on Gamsan as alms and led the construction of Gamsansa Temple. He then commissioned the production of the two stone sculptures of Amitabha Buddha and Maitreya Bodhisattva for the temple, asking that they be sculpted realistically to reflect the actual appearance of his parents. Finally, he enshrined the remains of his parents in the sculptures through the hole in the back of the head (jeonghyeol). The Maitreya Bodhisattva is a standing image with a nirmanakaya, or "transformation Buddha," on the crown. As various art historians have pointed out, this iconography is virtually unprecedented among Maitreya images in East Asian Buddhist sculpture, leading some to speculate that the standing image is actually the Avalokitesvara. However, anyone who reads the dedicatory inscription can have no doubt that this image is in fact the Maitreya. To ensure that the sculpture properly embodied his mother (who wished to be reborn in Tushita Heaven with Maitreya Bodhisattva), Kim Jiseong combined the iconography of the Maitreya and Avalokitesvara (the reincarnation of compassion). Hence, Kim Jiseong's deep love for his mother motivated him to modify the conventional iconography of the Maitreya and Avalokitesvara. A similar sentiment can be found in the sculpture of Amitabha Buddha. To this day, any visitor to the temple who first looks at the sculptures from the front before reading the text on the back will be deeply touched by the filial love of Kim Jiseong, who truly cherished the memory of his parents.

Effects of climate change on biodiversity and measures for them (생물다양성에 대한 기후변화의 영향과 그 대책)

  • An, Ji Hong;Lim, Chi Hong;Jung, Song Hie;Kim, A Reum;Lee, Chang Seok
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.474-480
    • /
    • 2016
  • In this study, formation background of biodiversity and its changes in the process of geologic history, and effects of climate change on biodiversity and human were discussed and the alternatives to reduce the effects of climate change were suggested. Biodiversity is 'the variety of life' and refers collectively to variation at all levels of biological organization. That is, biodiversity encompasses the genes, species and ecosystems and their interactions. It provides the basis for ecosystems and the services on which all people fundamentally depend. Nevertheless, today, biodiversity is increasingly threatened, usually as the result of human activity. Diverse organisms on earth, which are estimated as 10 to 30 million species, are the result of adaptation and evolution to various environments through long history of four billion years since the birth of life. Countlessly many organisms composing biodiversity have specific characteristics, respectively and are interrelated with each other through diverse relationship. Environment of the earth, on which we live, has also created for long years through extensive relationship and interaction of those organisms. We mankind also live through interrelationship with the other organisms as an organism. The man cannot lives without the other organisms around him. Even though so, human beings accelerate mean extinction rate about 1,000 times compared with that of the past for recent several years. We have to conserve biodiversity for plentiful life of our future generation and are responsible for sustainable use of biodiversity. Korea has achieved faster economic growth than any other countries in the world. On the other hand, Korea had hold originally rich biodiversity as it is not only a peninsula country stretched lengthily from north to south but also three sides are surrounded by sea. But they disappeared increasingly in the process of fast economic growth. Korean people have created specific Korean culture by coexistence with nature through a long history of agriculture, forestry, and fishery. But in recent years, the relationship between Korean and nature became far in the processes of introduction of western culture and development of science and technology and specific natural feature born from harmonious combination between nature and culture disappears more and more. Population of Korea is expected to be reduced as contrasted with world population growing continuously. At this time, we need to restore biodiversity damaged in the processes of rapid population growth and economic development in concert with recovery of natural ecosystem due to population decrease. There were grand extinction events of five times since the birth of life on the earth. Modern extinction is very rapid and human activity is major causal factor. In these respects, it is distinguished from the past one. Climate change is real. Biodiversity is very vulnerable to climate change. If organisms did not find a survival method such as 'adaptation through evolution', 'movement to the other place where they can exist', and so on in the changed environment, they would extinct. In this respect, if climate change is continued, biodiversity should be damaged greatly. Furthermore, climate change would also influence on human life and socio-economic environment through change of biodiversity. Therefore, we need to grasp the effects that climate change influences on biodiversity more actively and further to prepare the alternatives to reduce the damage. Change of phenology, change of distribution range including vegetation shift, disharmony of interaction among organisms, reduction of reproduction and growth rates due to odd food chain, degradation of coral reef, and so on are emerged as the effects of climate change on biodiversity. Expansion of infectious disease, reduction of food production, change of cultivation range of crops, change of fishing ground and time, and so on appear as the effects on human. To solve climate change problem, first of all, we need to mitigate climate change by reducing discharge of warming gases. But even though we now stop discharge of warming gases, climate change is expected to be continued for the time being. In this respect, preparing adaptive strategy of climate change can be more realistic. Continuous monitoring to observe the effects of climate change on biodiversity and establishment of monitoring system have to be preceded over all others. Insurance of diverse ecological spaces where biodiversity can establish, assisted migration, and establishment of horizontal network from south to north and vertical one from lowland to upland ecological networks could be recommended as the alternatives to aid adaptation of biodiversity to the changing climate.

Studies on the Inheritance of Agronomic Characteristics in Upland Cotton Varieties (Gossypium hirsutum L.) in Korea (육지면품종의 유용형질의 유전에 관한 연구)

  • Bang-Myung Kae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.21 no.2
    • /
    • pp.281-313
    • /
    • 1976
  • To obtain fundamental informations on cotton breeding efficiences for Korea, individual genetic relationships and interrelationships between the agronomic characteristics of Upland cotton were investigated. These experiments were couducted at the Mokpo Branch Station $(34^{\circ}48'N, $ $126^{\circ}23'E$ and altitude of 10m above sea level) from 1969 through 1972. Heterosis, combining ability, dominance and recessive gene action, genetic variance, and phenotypic and genotypic correlation were investigated by $F_1'S$ from an 11-parent partial diallel cross and the segregating $F_2$ and $F_3$ populations of the cross Paymaster times Heujueusseo Trice. The following points resulted from this study, 1. Heteroses for number of bolls per plant and lint yield were significant at 27, 84% and 37.26%, respectively. No other character had significant heteroses. 2. The GCA estimates for all studied characteristics were higher than the SCA estimates. Varieties with high GCA effects were Suwon 1 for earliness, Paymaster and Arijona for high lint percent, and Arijona for long fiber, etc, 3. SCA estimates for lint yield varied widely in crosses with Mokpo 4, Mokpo 6 and Heujueusseo Trice. Those crosses with the highest SCA effects were combinations with large characteristics differences, Example of these crosses are Mokpo 4 times Acala 1517W, Mokpo 4 times D. P. L. and Heujueusseo Trice aud Paymaster. 4. Early-maturing varieties were completely dominant to late-maturing varieties in some combinations while other crosses gave intermediate phenotypes. These results suggest additive genetic action by multi-genes. Heujueusseo Trice, Mokpo 6, and Suwon 1 showed highest degree of dominance for earliness. 5. There were no significant trends for inheritance of weight of boll and 100 seeds weight. 6. Long staple was partially to completely dominant to short staple. Though there were single gene ratios the rate of dominance decreased in the $F_2$ and $F_3$ populations in the cross between the long staple variety Paymaster and the short staple variety Heujueusseo Trice. Diallel cross $F_1$ hybrids showed complicated allelic gene action for staple length. Various dominance degree were shown by varieties. 7. Number of bolls per plant indicated strong over-dominance and small non-allelic additive gene action. 8. Lint Yield was characterized by over-dominance and by multiple non-allelic-gene action. High-yielding varieties were dominant to low-yielding ones. However, the low-yielding variety Heujueusseo Trice showed over-dominance, indicating different reactions according to the varieties and combinations. 9. Broad sense heritability for days to flowering was 34-39% while narrow sense heritability was 11%. Large variations of individual plants caused by Korean climatic conditions cause this situation. Heritability estimates for weight of boll was 30% for broad sense and 22% for narrow sense. 10. Heritability estimates for staple length and lint percent were very high suggesting strong selection effects. 11. Narrow sense heritability estimates for number of bolls per plant was 30% in the diallel cross $F_1$ hybrids and 36% in the $F_2$ population of the special cross. Broad sense heritability was estimated at 67% suggesting that. 12. Heritability estimates for lint yield was low due to high over-dominance in the diallel cross $F_1$ hybrids. Heritability estimates for yield was low in the $F_1$ hybrids but high in the $F_2$ and $F_3$ populations. 13. Phenotypic and genotypic correlations between lint percent and days to flowering and between staple length and days to flowering were high in the $F_1, $ $F_2$ and $F_3$ populations. Late-maturing varieties and individuals had long staple and high lint percent in general. As the correlation between days to flowering and lint yield was extremely low, the two traits were considered independent of each other. Days to flowering and number of bolls per plant were negatively correlated in the $F_3$ population, indicating early-maturing individual plants with many bolls may be readily selected. 14. Phenotypic and genotypic correlations between lint percent and staple length were high in $F_1, $ $F_2$ and $F_3$ populations. Accordingly, long staple varieties were high in lint percent. It was recognized that lint yield and lint percent were positively correlated in the diallel cross $F_1$ hybrids, and lint percent and staple length were positively correlated in the $F_2$ population, indicating that lint percent and staple length affect lint yield. 15. Lint yield was significantly and positively phenotypically correlated with number of bolls per plant in $F_1, $ $F_2$ and $F_3$ populations. A high genotypic correlation was also noted indicating a close genetic relationship. The selection efficiencies for a high-yielding variety can be increased when individual plants with many bolls are selected in later generations. The selection efficiencies for good fiber quality can be enhanced when individuals with long staple and high lint percent are selected in early generations.

  • PDF

Environmental Interpretation on soil mass movement spot and disaster dangerous site for precautionary measures -in Peong Chang Area- (산사태발생지(山沙汰發生地)와 피해위험지(被害危險地)의 환경학적(環境學的) 해석(解析)과 예방대책(豫防對策) -평창지구(平昌地區)를 중심(中心)으로-)

  • Ma, Sang Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.45 no.1
    • /
    • pp.11-25
    • /
    • 1979
  • There was much mass movement at many different mountain side of Peong Chang area in Kwangwon province by the influence of heavy rainfall through August/4 5, 1979. This study have done with the fact observed through the field survey and the information of the former researchers. The results are as follows; 1. Heavy rainfall area with more than 200mm per day and more than 60mm per hour as maximum rainfall during past 6 years, are distributed in the western side of the connecting line through Hoeng Seong, Weonju, Yeongdong, Muju, Namweon and Suncheon, and of the southern sea side of KeongsangNam-do. The heavy rain fan reason in the above area seems to be influenced by the mouktam range and moving direction of depression. 2. Peak point of heavy rainfall distribution always happen during the night time and seems to cause directly mass movement and serious damage. 3. Soil mass movement in Peongchang break out from the course sandy loam soil of granite group and the clay soil of lime stone and shale. Earth have moved along the surface of both bedrock or also the hardpan in case of the lime stone area. 4. Infiltration seems to be rapid on the both bedrock soil, the former is by the soil texture and the latter is by the crumb structure, high humus content and dense root system in surface soil. 5. Topographic pattern of mass movement spot is mostly the concave slope at the valley head or at the upper part of middle slope which run-off can easily come together from the surrounding slope. Soil profile of mass movement spot has wet soil in the lime stone area and loose or deep soil in the granite area. 6. Dominant slope degree of the soil mass movement site has steep slope, mostly, more than 25 degree and slope position that start mass movement is mostly in the range of the middle slope line to ridge line. 7. Vegetation status of soil mass movement area are mostly fire field agriculture area, it's abandoned grass land, young plantation made on the fire field poor forest of the erosion control site and non forest land composed mainly grass and shrubs. Very rare earth sliding can be found in the big tree stands but mostly from the thin soil site on the un-weatherd bed rock. 8. Dangerous condition of soil mass movement and land sliding seems to be estimated by the several environmental factors, namely, vegetation cover, slope degree, slope shape and position, bed rock and soil profile characteristics etc. 9. House break down are mostly happen on the following site, namely, colluvial cone and fan, talus, foot area of concave slope and small terrace or colluvial soil between valley and at the small river side Dangerous house from mass movement could be interpreted by the aerial photo with reference of the surrounding site condition of house and village in the mountain area 10. As a counter plan for the prevention of mass movement damage the technics of it's risk diagnosis and the field survey should be done, and the mass movement control of prevention should be started with the goverment support as soon as possible. The precautionary measures of house and village protection from mass movement damage should be made and executed and considered the protecting forest making around the house and village. 11. Dangerous or safety of house and village from mass movement and flood damage will be indentified and informed to the village people of mountain area through the forest extension work. 12. Clear cutting activity on the steep granite site, fire field making on the steep slope, house or village construction on the dangerous site and fuel collection in the eroded forest or the steep forest land should be surely prohibited When making the management plan the mass movement, soil erosion and flood problem will be concidered and also included the prevention method of disaster.

  • PDF

Self-purification Mechanisms in Natural Environments of Korea: I. A Preliminary Study on the Behavior of Organic/Inorganic Elements in Tidal Flats and Rice Fields (자연 정화작용 연구: I. 갯벌과 농지 상층수중 유 ${\cdot}$ 무기 원소의 거동에 관한 예비 연구)

  • Choi, Kang-Won;Cho, Yeong-Gil;Choi, Man-Sik;Lee, Bok-Ja;Hyun, Jung-Ho;Kang, Jeong-Won;Jung, Hoi-Soo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.3
    • /
    • pp.195-207
    • /
    • 2000
  • Organic and inorganic characteristics including bacterial cell number, enzyme activity, nutrients, and heavy metals have been monitored in twelve acrylic experimental tanks for two weeks to estimate and compare self-purification capacities in two Korean wet-land environments, tidal flat and rice field, which are possibly different with the environments in other countries because of their own climatic conditions. FW tanks, filled with rice field soils and fresh water, consist of FW1&2 (with paddy), FW3&4 (without paddy), and FW5&6 (newly reclaimed, without paddy). SW tanks, filled with tidal flat sediments and salt water, are SW1&2 (with anoxic silty mud), SW3&4 (anoxic mud), and SW5&6 (suboxic mud). Contaminated solution, which is formulated with the salts of Cu, Cd, As, Cr, Pb, Hg, and glucose+glutamic acid, was spiked into the supernatent waters in the tanks. Nitrate concentrations in supernatent waters as well as bacterial cell numbers and enzyme activities of soils in the FW tanks (except FW5&6) are clearly higher than those in the SW tanks. Phosphate concentrations in the SW1 tank increase highly with time compared to those in the other SW tanks. Removal rates of Cu, Cd, and As in supematent waters of the FW5&6 tanks are most slow in the FW tanks, while the rates in SW1&2 are most fast in the SW tanks. The rate for Pb in the SW1&2 tanks is most fast in the SW tanks, and the rate for Hg in the FW5&6 tanks is most slow in the FW tanks. Cr concentrations decrease generally with time in the FW tanks. In the SW tanks, however, the Cr concentrations decrease rapidly at first, then increase, and then remain nearly constant. These results imply that labile organic materials are depleted in the FW5&6 tanks compared to the FW1&2 and FW3&4 tanks. Removal of Cu, Cd, As from the supernatent waters as well as slow removal rates of the elements (including Hg) are likely due to the combining of the elements with organic ligands on the suspended particles and subsequent removal to the bottom sediments. Fast removal rates of the metal ions (Cu, Cd, As) and rapid increase of phosphate concentrations in the SW1&2 tanks are possibly due to the relatively porous anoxic sediments in the SW1&2 tanks compared to those in the SW3&4 tanks, efficient supply of phosphate and hydrogen sulfide ions in pore wates to the upper water body, complexing of the metal ions with the sulfide ions, and subsequent removal to the bottom sediments. Organic materials on the particles and sulfide ions from the pore waters are the major factors constraining the behaviors of organic/inorganic elements in the supernatent waters of the experimental tanks. This study needs more consideration on more diverse organic and inorganic elements and experimental conditions such as tidal action, temperature variation, activities of benthic animals, etc.

  • PDF

Studies on the Propagation of the Freshwater Prawn, Macrobrachium nipponense (De Haan) Reared in the Laboratory 2. Life History and Seedling Production (담수산 새우, Macrobrachium nipponense (De Haan)의 증${\cdot}$양식에 관한 생물학적 기초연구 2. 생활사 및 종묘생산에 관한 연구)

  • KWON Chin-Soo;LEE Bok-Kyu
    • Journal of Aquaculture
    • /
    • v.5 no.1
    • /
    • pp.29-67
    • /
    • 1992
  • Life cycle and seed production of the freshwater prawn, Macrobrachium nipponense, were studied and the results are as follows : 1. Larval development : Embryos hatched out as zoea larvae of 2.06 mm in mean body length. The larvae passed through 9 zoea stages in $15{\~}20$ days and then metamorphosed into postlarvae measuring 5.68 mm in mean body length. Each zoea stage can be identified based on the shapes of the first and second antennae, exo- and endopodites of the first and second pereiopods, telson and maxillae. 2. Environmental requirements of zoea larvae : Zoea larvae grew healthy when fed with Artemia nauplii. Metamorphosing rate was $65{\~}72{\%}$ at $26{\~}28\%$ and $7.85{\~}8.28\%_{\circ}Cl.$. The relationship between the zoeal period (Y in days) and water temperature (X in $^{\circ}C$) is expressed as Y=46.0900-0.9673X. Zoeas showed best survival in a water temperature range of $26{\~}32^{\circ}C$ (optimum temperature $28^{\circ}C$), at which the metamorphosing rate into postlarvae was $54{\~}72\%$ The zoeas survived more successfully in chlorinity range of $4.12{\~}14.08{\%_{\circ}}Cl.$, (optimum chlorinity $7.6{\~}11.6\;{\%_{\circ}}Cl.$.), at which the metamorphosing rate was $42{\~}76{\%}$. The whole zoeal stages tended to be longer in proportion as the chlorinity deviated from the optimum range and particularly toward high chlorinity. Zoeas at all stages could not tolerate in the freshwater. 3. Environmental requirements of postlarvae and juveniles : Postlarvae showed normal growth at water temperatures between $24{\~}32^{\circ}C$ (optimun temperature $26{\~}28^{\circ}$. The survival rate up to the juvenile stage was $41{\~}63{\%}$. Water temperatures below $24^{\circ}C$ and above $32^{\circ}$ resulted in lower growth, and postlarvae scarcely grew at below $17^{\circ}C$. Cannibalism tended to occur more frequently under optimum range of temperatures. The range of chlorinity for normal growth of postlarvae and juveniles was from 0.00 (freshwater) to $11.24{\%_{\circ}}Cl.$, at which the survival rate was $32{\~}35\%$. The postlarvae grew more successfully in low chlorinities, and the best growth was found at $0.00\~2.21{\%_{\circ}}Cl.$. The postlarvae and juveniles showed better growth in freshwater but did not survive in normal sea water. 4. Feeding effect of diet on zoea Ilarvae : Zoea larvae were successfully survived and metamorposed into postlarvae when fed commercial artificial plankton, rotifers, and Artemia nauplii in the aquaria. However, the zoea larvae that were fed Artemia nauplii and reared in Chlorella mixed green water showed better results. The rate of metamorphosis was $68\~{\%}75$. The larvae fed cow live powder, egg powder, and Chlorella alone did not survive. 5. Diets of postlarvae, juveniles and adults : Artemia nauplii and/or copepods were good food for postlarvae. Juveniles and adults were successfully fed fish or shellfish flesh, annelids, corn grain, pelleted feed along with viscera of domestic animals or fruits. 6. Growth of postlarvae, juveniles and adults : Under favorable conditions, postlarvae molted every five or six days and attained to the juvenile stage within two months and they reached 1.78 cm in body length and 0.17 g in body weight. The juveniles grew to 3.52 cm in body length and 1.07 g in body weight in about four months. Their sexes became determinable based on the appearance of male's rudimental processes (a secondary sex character) on the endopodites of second pereiopods of males. The males commonly reached sexual maturity in seven months after attaining the postlarvae stage and they grew to 5.65 cm in body length and 3.41 g in body weight. Whereas the females attained sexual maturity within six to seven months, when they measured 4.93 cm in body length and 2.43 g in body weight. Nine or ten months after hatching, the males grew $6.62{\~}7.14$ cm in body length and $6.68{\~}8.36$ g in body weight, while females became $5.58{\~}6.08$ cm and $4.04{\~}5.54$ g. 7. Stocking density : The maximum stocking density in aquaria for successful survival and growth was $60{\~}100$ individuals/$\ell$ for zoeas in 30-days rearing (survival rate to postlarvae, $73{\~}80{\%}$) ; $100{\~}300$ individuals/$m^2$ for postlarvae of 0.57 cm in body length (survival rate for 120 days, $78{\~}85{\%}$) ; $40{\~}60$ individuals/$m^2$ for juveniles of 2.72 cm in body length (survival rate for 120 days, $63{\~}90{\%}$) : $20{\~}40$ individuals/$m^2$ for young prawns of 5.2 cm in body length (survival rate for 120 days, $62\~90{\%}$) ; and $10\~30$ individuals/$m^2$ for adults of 6.1 cm in body length (survival rate for 60 days, $73\~100{\%}$). The stocking density of juveniles, youngs and adults could be increased up to twice by providing shelters.

  • PDF

The Three Types of Clinical Manifestation of Cow's Milk Allergy with Predominantly Intestinal Symptoms (위장관 증세 위주로 발현하는 영유아기 우유 알레르기 질환의 3가지 임상 유형에 관한 고찰)

  • Lee, Jeong-Jin;Lee, Eun-Joo;Kim, Hyun-Hee;Choi, Eun-Jin;Hwang, Jin-Bok;Han, Chang-Ho;Chung, Hai-Lee;Kwon, Young-Dae;Kim, Yong-Jin
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.3 no.1
    • /
    • pp.30-40
    • /
    • 2000
  • Purpose: During the first year of life, cow's milk protein is the major offender causing food allergy. Cow's milk allergy (CMA) affects 2~7% of infants, of which approximately one-half show predominantly gastrointestinal symptoms. We studied the clinical types of cow's milk allergy with predominantly gastrointestinal symptoms (CMA-GI) of childhood. Methods: The retrospective study was performed on 30 (male 22, female 8) patients who had diagnosed as CMA-GI during 2 years and 3 months from March 1995 to June 1997. Results: 1) Children with CMA-GI presented in the three types of clinical manifestation on the basis of time to reaction to milk ingestion: Quick (Q) onset (5 cases), Slow (S) onset (20 cases), Quick & Slow (Q&S) (5 cases). 2) Age on admission of the three groups was significantly different (p<0.05): (Q onset: $81.4{\pm}67.1$ days, S onset: $31.9{\pm}12.7$ days, Q&S: $366.0{\pm}65.0$ days). Although the body weight at birth was 10~95 percentile in all patients, body weight on admission was different: (Q onset: 10~50 percentile, S onset: below 10 percentile, Q&S: 10~25 percentile). S onset group was significantly different compared with other groups (p<0.05) and 90% of this one was failure to thrive below 3 percentile. 3) Peripheral leukocyte counts were as followings: (Q onset: $5,700{\sim}12,300/mm^3$, S onset: $10,000{\sim}33,400/mm^3$, Q&S: $5,200{\sim}14,900/mm^3$). Slow onset group was significantly different compared with other groups (p<0.05). Serum albumin levels on admission were as followings: (Q onset: $4.2{\pm}0.4\;g/dl$, S onset: $3.0{\pm}0.3\;g/dl$, Q&S: $4.0{\pm}0.3\;g/dl$). S onset group was significantly different compared with other groups (p<0.05) and 85% of this one was below 3.5 g/dl. 4) Although morphometrical analysis on small intestinal mucosa did not show enteropathy in Q onset and Q&S groups, all cases of S onset revealed enteropathy: 45% of this one showed subtotal villous atrophy, 55 % showed partial villous atrophy. 5) Allergic reaction test to other foods was not performed in S onset group because of ethical problem and high risk in general condition. In Q onset group, allergic reaction to one or two other foods: soy formula, weaning formula and eggs. Q&S goup revealed allergic reactions to several foods or to most of all foods except protein hydrolysate formula: eggs, potatos, some kinds of sea food, apples, carrots, beef and chicken. 6) Serum IgE level, peripheral eosinophil counts, milk RAST, soy RAST, skin test were not significantly different among groups. Conclusion: CMA-GI may present in three clinical ways on the basis of time to reaction to milk ingestion, typical clinical findings and morphologic changes in the small bowel mucosal biopsy specimens. This clinical subdivision might be helpful in diagnostic and therapeutic approaches in CMA-GI. Early suspicion is mandatory especially in S onset type because of high risks with malnutrition and enteropathy.

  • PDF

Studies on the Natural Distribution and Ecology of Ilex cornuta Lindley et Pax. in Korea (호랑가시나무의 천연분포(天然分布)와 군낙생태(群落生態)에 관한 연구(研究))

  • Lee, Jeong Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.62 no.1
    • /
    • pp.24-42
    • /
    • 1983
  • To develop Ilex cornuta which grow naturally in the southwest seaside district as new ornamental tree, the author chose I. cornuta growing in the four natural communities and those cultivated in Kwangju city as a sample, and investigated its ecology, morphology and characteristics. The results obtained was summarized as follows; 1) The natural distribution of I. cornuta marks $35^{\circ}$43'N and $126^{\circ}$44'E in the southwestern part of Korea and $33^{\circ}$20'N and $126^{\circ}$15'E in Jejoo island. This area has the following necessary conditions for Ilex cornuta: the annual average temperature is above $12^{\circ}C$, the coldness index below $-12.7^{\circ}C$, annual average relative humidity 75-80%, and the number of snow-covering days is 20-25 days, situated within 20km of from coastline and within, 100m above sea level and mainly at the foot of the mountain facing the southeast. 2) The vegetation in I. cornuta community can be divided that upper layer is composed of Pinus thunbergii and P. densiflora, middle layer of Eurya japonica var. montana, Ilex cornuta and Vaccinium bracteatum, and the ground vegetation is composed of Carex lanceolata and Arundinella hirta var. ciliare. The community has high species diversity which indicates it is at the stage of development. Although I. cornuta is a species of the southern type of temperate zone where coniferous tree or broad leaved, evergreen trees grow together, it occasionally grows in the subtropical zone. 3) Parent rock is gneiss or rhyolite etc., and soil is acidic (about pH 4.5-5.0) and the content of available phosphorus is low. 4) At maturity, the height growth averaged $10.48{\pm}0.23cm$ a year and the diameter growth 0.43 cm a year, and the annual ring was not clear. Mean leaf-number was 11.34. There are a significant positive correlation between twig-elongation and leaf-number. 5) One-year-old seedling grows up to 10.66 cm (max. 18.2 cm, min. 4.0 cm) in shoot-height, with its leaf number 12.1 (max. 18, min), its basal diameter 2.24 mm (max. 4.0 mm, min. 1.0 mm) and shows rhythmical growth in high temperature period. There were significant positive correlations between stalk-height and leaf-number, between stalk-height and basal-diameter, and between number and basal diameter. 6) The flowering time ranged from the end of April to the beginning of May, and the flower has tetra-merouscorella and corymb of yellowish green. It has a bisexual flower and dioecism with a sexual ratio 1:1. 7) The fruit, after fertilization, grows 0.87 cm long (0.61-1.31 cm) and 0.8 cm wide (0.62-1.05 cm) by the beginning of May. Fruits begin to turn red and continue to ripen until the end of October or the beginning of November and remain unfading until the end of following May. With the partial change in color of dark-brown at the beginning of the June fruits begin to fall, bur some remain even after three years. 8) The seed acquision ratio is 24.7% by weight, and the number of grains per fruit averages 3.9 and the seed weight per liter is 114.2 gram, while the average weight of 1,000 seeds is 24.56 grams. 9) Seeds after complete removal of sarcocarp, were buried under ground in a fixed temperature and humidity and they began to develop root in October, a year later and germinated in the next April. Under sunlight or drought, however, the dormant state may be continued.

  • PDF