• Title/Summary/Keyword: Screen Printed Carbon Electrode

Search Result 41, Processing Time 0.014 seconds

Alizarin Red S modified electrochemical sensors for the detection of aluminum ion

  • Chang, Seung-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.421-427
    • /
    • 2010
  • Alizarin Red S modified screen printed carbon electrodes were developed for the electrochemical detection of aluminum ion. The electrodes developed use screen-printed carbon electrodes(SPCEs) coupled with chemical modification with an organic chelator, Alizarin Red S(ARS), for aluminum ion detection in aqueous solution. For sensor fabrication ARS was directly immobilized on the surface of SPCEs using PVA-SbQ(The poly(vinyl alcohol) bearing stryrylpyridinium groups). Aluminum concentrations were indirectly estimated by amperometric determination of the non-complexed ARS immobilized on the electrodes, after its complexation with aluminum. The sensitivity of the sensor developed was $3.8\;nA{\mu}M^{-1}cm^{-2}$ and the detection limit for aluminum was $25\;{\mu}M$.

Simple Electrochemical Immunosensor for the Determination of Rabbit IgG Using Osmium Redox Polymer Films

  • Choi, Young-Bong;Lee, Seung-Hwa;Tae, Gun-Sik
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.229-232
    • /
    • 2007
  • An amperometric immunosensor for the determination of rabbit IgG is proposed. The immunoassay utilizes a screen-printed carbon electrode on which osmium redox polymer is electrodeposited. This immunoassay detects 0.1 ng/ml of rabbit IgG, which is ${\sim}10^2$ fold higher than the most sensitive enzyme amplified amperometric immunoassay. The assay utilizes a screen-printed carbon electrode which was pre-coated by a co-electrodeposited film of an electron conducting redox hydrogel and a rabbit IgG. The rabbit IgG in the electron conducting film conjugates captures, when present, the anti-rabbit IgG. The captured anti-rabbit-IgG is labeled with horseradish peroxidase (HRP) which catalyzes the two-electron reduction of $H_2O_2$ to water. Because the redox hydrogel electrically connects HRP reaction centers to the electrode, completion of the sandwich converts the film from non-electrocatalytic to electro-catalytic for the reduction of $H_2O_2$ to $H_2O$ when the electrode is poised at 200 mV vs. Ag/AgCl.

Disposable Type Electrochemical Ethanol Sensor (일회용 전기화학적 에탄올 센서)

  • Kim, Moon Hwan;Yoo, Jae Hyun;Oh, Hyun Joon;Cha, Geun Sig;Nam, Hakhyun;Park, Sung Woo;Kim, Young Man
    • Analytical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.218-223
    • /
    • 1999
  • A single use, screen-printed sensor for the measurement of liquid phase ethanol was developed and its electrochemical performance was investigated. Disposable type edthanol sensor was fabricated by serially screen printing the carbon paste, silverd pasted and insulator inlon a polyester substrate to pattern working and reference electrode sites and electrical contact. Alcohol dehydrogenase(ADH) or alcohol oxidase(AOD) together with appropriate electron transfer mediators was immobilized on the working electrode. To improve the sensitivity and reproducibility of carbon paste electrode, some pretreatment procedures were applied and their resultant electrochemical performance was examined. The disposable type electrochemical ethanol sensor developed in this study conveniently determines the ethanol in liquid samples such as blood and in fermentation process.

  • PDF

Surface Modification of a Screen-printed Carbon Electrode with Iridium Oxide and Its Application of an Impedance Sensor (스크린 프린팅 탄소 전극의 이리듐 산화물 표면 개질과 이의 임피던스 센서 응용)

  • Min Sik Kil;Jo Hee Yoon;Jinwu Jang;Bong Gill Choi
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.493-500
    • /
    • 2023
  • In this study, we developed an impedance sensor capable of controlling electrode polarization by coating iridium oxide (IrOx) on the surface of the screen-printed carbon electrode. IrOx was deposited on the surface of carbon electrodes according to the number of cycles (0~50 cycles) by cyclic voltammetry. Observation of scanning electron microscope images revealed that the size and number of IrOx particles increased as the number of cycles increased. The changes in impedance responses as a function of the NaCl concentration of the as-obtained sensors were investigated using electrochemical impedance spectroscopy. The sensors manufactured in 50 cycles exhibited the best coefficient of determination and reproducibility, attributed to the well-controlled electrode polarization. We further demonstrated the usefulness of the IrOx-based sensor as a diagnosis sensor for dry eye syndrome by comparing the results of the commercially available osmometer and our sensor using actual solution samples.

Disposable Electrochemical Immunosensors for the Detection of Herbicide (제초제 검출을 위한 전기화학적 일회용 면역센서)

  • Chang, Seung-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.35-39
    • /
    • 2011
  • A disposable electrochemical immunosensor system has been developed for the detection of herbicide in aqueous samples. Disposable screen printed carbon electrodes(SPCE) were used as basic electrodes and an enzyme, horseradish peroxidase (HRP), and anti-herbicide antibodies was immobilised on to the working electrode of SPCE by using avidin-biotin coupling reactions. An herbicide-glucose oxidase conjugates have been used for the competitive immunoreaction with sample herbicides. The enzymatic reaction between the conjugated glucose oxidase and glucose added generates hydrogen peroxide, which was reduced by the peroxidase immobilised. The latter process caused an electrical current change, due to direct re-reduction of peroxidase by a direct electron transfer mechanism, which was measured to determine the herbicides in the sample. The optimal operational condition was found to be: $20\;{\mu}gl-1$ deglycosylated avidin loading to the working electrode and working potential +50 mV vs. Ag/AgCl. The total assay time was 15 min after sample addition. The detection limits for herbicides, atrazine and simazine, were found to be 3 ppb and 10 ppb, respectively.

Amperometric Detection of DNA by Electroreducation of O2 in an Enzyme-Amplified Two-Component Assay

  • Yoon Chang-Jung;Kim Hyug-Han
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.1
    • /
    • pp.44-48
    • /
    • 2004
  • The two-component type enzyme amplified amperometric DNA assay is described to use an ambient $O_2$ of the substrate of the DNA labeling enzyme. Although the assay detects DNA only at > 0.5M concentration, a concentration $\~10^6$ fold higher than the sandwich-type enzyme amplified amperometric DNA assay, it can be run with an always available substrate. The assay utilizes screen-printed carbon electrodes (SPEs) which were pre-coated by a co-electrodeposited film of an electron conducting redox hydrogel and a 37-base long single-stranded DNA sequence. The DNA in the electron conducting film hybridizes and captures, when present, the 37-base long detection-DNA, which is labeled with bilirubin oxidase (BOD), an enzyme catalyzing the four-electron reduction of $O_2$ to water. Because the redox hydrogel electrically connects the BOD reaction centers to the electrode, completion of the sandwich converts the film from non-electrocatalytic to electrocatalytic for the reduction of $O_2$ to water when the electrode is poised at 200 mV vs. Ag/hgCl. The advantage or the assay over the earlier reported sandwich type enzyme amplified amperometric DNA assay, in which the amplifying enzyme was horseradish peroxidase, is that it utilizes ambient $O_2$ instead of the less stable and naturally unavailable $H_2O_2$.

Copper phthalocyanine conjugated PANI coated screen printed carbon electrode for electrochemical sensing of 4-NP

  • Ramalingam Manikandan;Jang-Hee Yoon;Seung-Cheol Chang
    • Journal of Surface Science and Engineering
    • /
    • v.56 no.1
    • /
    • pp.40-54
    • /
    • 2023
  • In this work, we synthesized a novel electrochemical sensing materials based on tetracarboxylic copper phthalocyanine (TcCuPtc) conjugated PANI (TcCuPtc@PANI). The synthesized materials were employed to modify the screen-printed carbon electrode (SPCE) for the selective sensing of 4-nitrophenol. The TcCuPtc was conjugated with conducting polymer of PANI through the electrostatic interaction and π-π electron conjugation, the polymer film of PANI to inhibit the leakage of TcCuPtc from the surface of the electrode. The prepared TcCuPtc@PANI were characterized and confirmed by scanning electron microscopy (SEM) with EDX, ATR-IR, UV-vis absorption spectroscopy, cyclic voltammetry, and differential pulse voltammetry techniques. The prepared TcCuPtc@PANI/SPCE showed an excellent electrocatalytic sensing of 4-NP in the linear concentrations from 3 to 500 nM with a LOD of 0.03 nM and a sensitivity of 8.8294 ㎂/nM cm-2. However, the prepared TcCuPtc@PANI/SPCE showed selective sensing of 4-NP in the presence of other interfering species. The practical applicability of the TcCuPtc@PANI/SPCE was employed for the sensing of 4-NP in different water samples by standard addition method and showed satisfactory recovery results.

Paper-Based Bipolar Electrochemistry

  • Renault, Christophe;Scida, Karen;Knust, Kyle N.;Fosdick, Stephen E.;Crooks, Richard M.
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.146-152
    • /
    • 2013
  • We demonstrate that carbon electrodes screen-printed directly on cellulose paper can be employed to perform bipolar electrochemistry. In addition, an array of 18 screen-printed bipolar electrodes (BPEs) can be simultaneously controlled using a single pair of driving electrodes. The electrochemical state of the BPEs is read-out using electrogenerated chemiluminescence. These results are important because they demonstrate the feasibility of coupling bipolar electrochemistry to microfluidic paperbased analytical devices (${\mu}PADs$) to perform highly multiplexed, low-cost measurements.

Spray-coated Carbon Nanotube Counter Electrodes for Dye-sensitized Solar Cells

  • Lee, Won-Jae;Lee, Dong-Yun;Kim, In-Sung;Jeong, Soon-Jong;Song, Jae-Sung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.4
    • /
    • pp.140-143
    • /
    • 2005
  • Carbon Nanotube(CNTs) counter electrode is a promising alternative to Platinum counter electrode for dye sensitized solar cells (DSSCs). In this study, CNT counter electrodes having different visible light transmittance were prepared on fluorine-doped tin oxide (FTO) glass surface by spray coating method. Microstructural images show that there are CNT-tangled region coated on FTO glass counter electrodes. Using such CNT counter electrodes and screen printed $TiO_2$ electrodes, DSSCs were assembled and its I-V characteristics have been studied and compared. Light energy conversion efficiency of DSSCs increased with decreasing in light transmittance of CNT counter electrode. Efficiency of DSSCs having CNT counter electrode is compatible to that of Pt counter electrode.

Screen-printed carbonaceous matrrials for photocapacitor electrode (스크린 프린터에 의한 광캐패시터용 카본 전극 제작)

  • Choi, Woo-Jin;Kwak, Dong-Joo;Sung, Youl-Moon;Ha, Soon-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.411-414
    • /
    • 2009
  • Photo-capacitor electrodes are attracting great attention because of their high capacitance and potential applications in electronic devices. Carbon capacitor, active carbon capacitor and its combination will be fabricated using simple sandwich capacitor electrode method as carbonaceous material on each type of capacitor electrodes with 20 ${\times}$ 15 mm cell size. Carbon/active carbon cell was fabricated using sol-gel process with 120oC dry temperature in l hour and using sintering process with 500oC in 2 hour. The effect of sintering temperature on carbon properties was also investigated with X-ray diffraction technique to get the best sintering temperature. The detail of fabrication process will be explained. Elemental composition in electrode material can be measured using quantitative spectroscopic as and a cyclic voltammetric technique was used to study the combined effects of electrode material and effect of annealing temperature and also time on the capacitance of thermally treated in capacitor electrode. In this work, characterization impedance technique is used to measurement of capacitance and giving complementary results. Active carbon as carbonaceous material has a better capacitance in charge/discharge process with mean thickness $32{\mu}m$ and with particle size $1{\mu}m$ to $4.5{\mu}m$ in 20 ${\times}$ 15 mm sample size of capacitor electrode.

  • PDF