DOI QR코드

DOI QR Code

Amperometric Detection of DNA by Electroreducation of O2 in an Enzyme-Amplified Two-Component Assay

  • Published : 2004.02.01

Abstract

The two-component type enzyme amplified amperometric DNA assay is described to use an ambient $O_2$ of the substrate of the DNA labeling enzyme. Although the assay detects DNA only at > 0.5M concentration, a concentration $\~10^6$ fold higher than the sandwich-type enzyme amplified amperometric DNA assay, it can be run with an always available substrate. The assay utilizes screen-printed carbon electrodes (SPEs) which were pre-coated by a co-electrodeposited film of an electron conducting redox hydrogel and a 37-base long single-stranded DNA sequence. The DNA in the electron conducting film hybridizes and captures, when present, the 37-base long detection-DNA, which is labeled with bilirubin oxidase (BOD), an enzyme catalyzing the four-electron reduction of $O_2$ to water. Because the redox hydrogel electrically connects the BOD reaction centers to the electrode, completion of the sandwich converts the film from non-electrocatalytic to electrocatalytic for the reduction of $O_2$ to water when the electrode is poised at 200 mV vs. Ag/hgCl. The advantage or the assay over the earlier reported sandwich type enzyme amplified amperometric DNA assay, in which the amplifying enzyme was horseradish peroxidase, is that it utilizes ambient $O_2$ instead of the less stable and naturally unavailable $H_2O_2$.

Keywords

References

  1. A. R. Dunn and J. A. Hassell, Cell, 12, 23 (1977) https://doi.org/10.1016/0092-8674(77)90182-9
  2. M. Ranki, A. Palva, M. Virtanen, M. Laaksonen and H. Soderlund, Gene, 21, 77 (1983) https://doi.org/10.1016/0378-1119(83)90149-X
  3. P. Dahlen, A.-C. Syvanen, P. Hurskainen, M. Kwiatkowski, C. Sund, J. Ylikoski, H. Soderlund and T. Lovgren, Mol. Cell Probes, 1, 159 (1987) https://doi.org/10.1016/0890-8508(87)90024-7
  4. R. M. Umek, S. W. Lin, J. Vielmetter, R. H. Terbrueggen, B. Irvine, C. J. Yu, J. F. Kayyem, H. Yowanto, G. F. Blackburn, D. H. Farkas and Y.-P. Chen, J. Mol. Diagn., 3, 74 (2001) https://doi.org/10.1016/S1525-1578(10)60655-1
  5. H. Korri- Youssoufi, F. Garnier, P. Srivastava, P. Godillot and A. Yassar, J. Am. Chem. Soc., 119, 7388 (1997) https://doi.org/10.1021/ja964261d
  6. C. N. Campbell, D. Gal, N. Cristler, C. Banditrat and A. Heller, Anal. Chem., 74, 158 (2002) https://doi.org/10.1021/ac015602v
  7. D. J. Caruana and A. Heller, J. Am. Chem. Soc., 121, 769 (1999) https://doi.org/10.1021/ja983328p
  8. M. Dequaire and A. Heller, Anal. Chem., 74, 4370 (2002) https://doi.org/10.1021/ac025541g
  9. Y. Zhang, H.-H. Kim, N. Mano, M. Dequaire and A. Heller, Anal. Bioanal. Chem., 374, 1050 (2002) https://doi.org/10.1007/s00216-002-1604-4
  10. Y. Zhang, H.-H. Kim and A. Heller, A. Anal. Chem., 75, 3267 (2003) https://doi.org/10.1021/ac034445s
  11. Z. Gao, G. Binyamin, H.-H. Kim, S. C. Barton, Y. Zhang and A. Heller, Angew. Chem. Int. Ed., 41, 810 (2002) https://doi.org/10.1002/1521-3773(20020301)41:5<810::AID-ANIE810>3.0.CO;2-I
  12. S. C. Barton, H.-H. Kim, G. Binyarnin, Y. Zhang and A. Heller, J. Phys. Chem. B, 105, 11917 (2001) https://doi.org/10.1021/jp012488b
  13. S. C. Barton, H.-H. Kim, G. Binyarnin, Y. Zhang and A. Heller, J Am. Chem. Soc., 123, 5802 (2001) https://doi.org/10.1021/ja010408b
  14. F. Xu, Appl. Biochem. Biotechnol., 95, 124 (2001)
  15. F. Xu, J. BioI. Chem., 272, 924 (1997) https://doi.org/10.1074/jbc.272.2.924
  16. F. Xu, Biochemistry, 35, 7608 (1996) https://doi.org/10.1021/bi952971a
  17. B. R. M. Reinhammer, J. Inorg. Biochem., 15, 27 (1981) https://doi.org/10.1016/S0162-0134(00)80133-6
  18. N. Mano, H.-H. Kim, Y. Zhang and A. Heller, J. Am. Chem. Soc., 124, 6480 (2002) https://doi.org/10.1021/ja025874v
  19. N. Mano, H.-H. Kim and A. Heller, J. Phys. Chem. B, 106, 8842 (2002) https://doi.org/10.1021/jp025955d
  20. S. Tsujimura, H. Tatsumi, J. Ogawa, S. Shimizu, K. Kano and T. Ikeda, J Eletroanal. Chem., 496, 69 (2001) https://doi.org/10.1016/S0022-0728(00)00239-4
  21. Y. Andreu, J. Galban, S. De Marcos and J. R. Catillo, Fresenius J. Anal. Chem., 368, 516 (2000) https://doi.org/10.1007/s002160000503
  22. A. Kosaka, C. Yamamoto, C. Morisita and K. Nakane, Clin. Biochem., 20, 451 (1987) https://doi.org/10.1016/0009-9120(87)90014-2
  23. A. Lavine, C. Sung, A. M. Klibanov and R. Langer, Science, 230, 543 (1985) https://doi.org/10.1126/science.4048947

Cited by

  1. Enzyme Electrochemistry — Biocatalysis on an Electrode vol.59, pp.4, 2006, https://doi.org/10.1071/CH05340