• Title/Summary/Keyword: Scientific Model

Search Result 1,336, Processing Time 0.023 seconds

The Alternatives of Communication Model and Geographic Visualization (커뮤니케이션 이론에 대한 대안과 지리적 시각화)

  • Son, Ill
    • Journal of the Korean association of regional geographers
    • /
    • v.4 no.1
    • /
    • pp.27-41
    • /
    • 1998
  • The communication model has been accepted as the basic research paradigm of cartography since Board(1967) discussed the map/model analogy. In that paradigm, the function of maps was limited to the media of communication, and the functionality of maps was extremely emphasized. Therefore the model could not play its own role under the new environments such as computer, GIS, scientific visualization. Nowadays, the model has been attacked on several grounds and several alternatives have been suggested. Among the objections raised are (1) geographic visualization in which maps are considered as the tool of scientific visualization, (2) the contributions of art which are ignored in the positivist cartographic research, and (3) deconstructionist arguments which deny the scientific epistemology of map as an objective form of knowledge and recognize the textuality of maps including their metaphorical and rhetorical nature. Since a publication by McCormick et al, the scientific visualization based on the powerful computer graphics is used in a wide context. Maps are treated as the tools of scientific visualization and emphasis is on exploration of the geographic data to gain understanding and insight in the geographic visualization processes. The research on geographic visualization have stayed in the early stage of developing the conceptual model and the basic visualization tools. But, it is expected that the geographic or visual thinking which is emphasized in the geographic visualization will contribute the reestablishment of links between cartography and geography. Also, the development of scientific visualization tools and strategies will offer the opportunities to suggest a fresh idea, to synthesize information and develop holistic approaches to geographical problems.

  • PDF

Effects of a Developmentally Appropriate Instruction Model for Science on the Curiosity and Problem Solving of Preschoolers (발달에 적합한 유아과학 수업절차모형이 유아의 호기심과 문제해결력에 미치는 영향)

  • Cho, Boo Wall
    • Korean Journal of Child Studies
    • /
    • v.27 no.4
    • /
    • pp.1-16
    • /
    • 2006
  • This study investigated the effectiveness of the Developmentally Appropriate Instruction Model for Science(DAIM-S) on increasing scientific curiosity and problem solving in young children. Subjects were 60 5-year-old middle class children, randomly assigned to one of two groups: either the DAIM-S group or the direct instruction group. For 2 months, the children in both groups took part in 21 science activity sessions. Both before and after treatment, subjects were tested on curiosity and scientific problem solving. The DAIM-S group showed higher achievement than the direct instruction group in the acquisition of curiosity and scientific problem solving. From these results, the researchers suggest application of the DIAM-S to the science teaching of young children.

  • PDF

Modeling of Hydrodynamic Processes at a Large Leak of Water into Sodium in the Fast Reactor Coolant Circuit

  • Perevoznikov, Sergey;Shvetsov, Yuriy;Kamayev, Aleksey;Pakhomov, Ilia;Borisov, Viacheslav;Pazin, Gennadiy;Mirzeabasov, Oleg;Korzun, Olga
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1162-1173
    • /
    • 2016
  • In this paper, we describe a physicomathematical model of the processes that occur in a sodium circuit with a variable flow cross-section in the case of a water leak into sodium. The application area for this technique includes the possibility of analyzing consequences of this leak as applied to sodium-water steam generators in fast neutron reactors. Hydrodynamic processes that occur in sodium circuits in the event of a water leak are described within the framework of a one-dimensional thermally nonequilibrium three-component gas-liquid flow model (sodium-hydrogen-sodium hydroxide). Consideration is given to the results of a mathematical modeling of experiments involving steam injection into the sodium loop of a circulation test facility. That was done by means of the computer code in which the proposed model had been implemented.

Recognition of the Nature of Science by Preservice Science Teachers on the Basis of the Atomic Model (원자모형에 기초한 예비과학교사들의 과학의 본성에 대한 인식)

  • An, Yu-La;Kim, Hyun-Joo
    • Journal of The Korean Association For Science Education
    • /
    • v.31 no.4
    • /
    • pp.539-556
    • /
    • 2011
  • The purpose of this study was to examine preservice secondary science teachers' understanding of the nature of science, by using nature of science (NOS) questionnaire on the basis of atomic model, and compare this to pre-studies. 'Understanding of nature of scientific model,' 'Tentativeness of scientific knowledge,' 'Subjectivity in science,' 'Use of inference and imagination,' 'Myths of the scientific method,' and 'Comparison between science and art.' were examined. Preservice teachers showed great comprehension of the tentativeness of scientific knowledge (the orbital model) and the subjectivity in science (the different interpretation about the experiment of particle scattering), but displayed the lowest comprehension of the scientific method. For understanding of nature of scientific model (the atomic model) and the comparison between science (Bohr's atomic model) and art (Picasso's work), preservice teachers brought out a combination of ontological and constructivist perspective and showed the contradictory thought about imagination in science research. In the result of comparison to pre-studies using the NOS instruments contains general terms, represented high levels of agreement about the tentativeness of scientific knowledge by using concrete examples of 'atomic model'. When concrete scientists such as Thomson, Rutherford, Bohr were presented, respondents revealed more informed views about the scientists' research method.

The Effects of a Brain-Based Science Teaching and Learning Model on ${\ulcorner}$Intelligent Life${\lrcorner}$ Course of Elementary School (뇌 기반 과학 교수 학습 모형을 적용한 "슬기로운 생활" 수업의 효과)

  • Lim, Chae-Seong;Ha, Ji-Yeon;Kim, Jae-Young;Kim, Nam-Il
    • Journal of Korean Elementary Science Education
    • /
    • v.27 no.1
    • /
    • pp.60-74
    • /
    • 2008
  • The purpose of this study was to examine the effects of a brain-based science teaching and learning model on the science related attitudes, scientific inquiry skills and science knowledge of the 2nd graders in Intelligent Life course. For this study, 117 elementary students from four classes of the 2nd grade in Seoul were selected. In the comparison group, traditional instruction was implemented and in the experimental group, instruction according to brain-based science teaching and learning model was implemented for four weeks. The results of this study were as follows : There were little differences between the comparison and experimental groups in terms of the science related attitudes except for the sub-domains of interest and curiosity. And brain-based science teaching and learning model programs improved a few scientific inquiry skills, especially observation and classification. In addition, the experimental groups showed a positive effect on science knowledge. In conclusion, brain-based science teaching and learning model programs were more effective in improvement of the science related attitudes, scientific inquiry skills and science knowledge of elementary students.

  • PDF

Effects of 5E Learning-Cycle Model on Science Academic Achievements, Science Process Skill and Scientific Attitude of Elementary School Students (5E 순환학습이 초등학생의 과학 학업 성취도와 탐구 능력 및 과학적 태도에 미치는 효과)

  • Dong, Hyo-Kwan;Song, Mi-Young;Shin, Young-Joon
    • Journal of Korean Elementary Science Education
    • /
    • v.29 no.4
    • /
    • pp.567-575
    • /
    • 2010
  • The purpose of this study is to investigate the effectiveness of academic achievements, science process skill and scientific attitude. The subjects of this study were 68 fourth-grade elementary school students who were 33 students for the 5E learning cycle instruction and 35 students for traditional instruction. The control group was taught with traditional teaching method, while the experimental group was taught 'the change to the volume of material due to heat' unit of 4th grade with the developed learning cycle model. The results were as fellows: First, the learning cycle instruction is more effective for understanding of a concept related to the change to the volume of material due to heat. Second, the learning cycle model seems more effective for the expansion of both scientific inquiry ability and scientific attitude.

  • PDF

Suggestion of the Scientific Argumentation PCK Developmental Model for Preservice Earth Science Teachers through an Instructional Design Program Using Argumentation Structures (논증구조 수업설계 프로그램을 통한 예비 지구과학 교사의 과학논증 PCK 발달 모델 제안)

  • Park, Won-Mi;Kwak, Youngsun
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.15 no.1
    • /
    • pp.76-90
    • /
    • 2022
  • In this study, after applying the argument structure class design program for 20 preservice earth science teachers, we conducted individual in-depth interviews, analyzed the data, and derived a scientific argumentation PCK development model. The scientific argumentation PCK development model consists of three dimensions: Scientific argumentation PCK, PCK ecosystem, and reflective practice. Scientific argumentation PCK is demonstrated in the process of designing or executing classes using argumentation structures as an instructional reasoning tool. PCK ecosystem, consisting of the existing conventional PCK components, is a dimension surrounding the scientific argumentation PCK, and these two dimensions develop by interacting with each other. Reflective practice regulates each dimension and develops it in various ways by mediating the two dimensions of the scientific argumentation PCK and the PCK ecosystem. The conclusions drawn based on the results are as follows: First, preservice science teachers can demonstrate scientific argumentation PCK in the process of design and implementation of lessons using argumentation structures as a pedagogical reasoning tool. Second, it is necessary to develop the PCK for pedagogical reasoning tools such as scientific argumentation PCK in advance for the development of science teachers' PCK, since the scientific argumentation PCK can develop various components of the PCK ecosystem. Finally, it is necessary to use scientific argumentation PCK to support the preservice teacher's reflective practice, seeing that the scientific argumentation PCK promotes the development of PCK ecosystem components by inducing reflective practice.

The Usage Intention of Combined Guard System - Focusing on GOP Scientific Guard System - (통합경계시스템의 이용의도에 미치는 영향 요인 분석 - 한국군 GOP 과학화 경계시스템을 중심으로 -)

  • Jang, Jin-Hyuk;Moon, Hee-Jin;Lee, Choong-J.
    • The Journal of Information Systems
    • /
    • v.19 no.4
    • /
    • pp.183-206
    • /
    • 2010
  • The technology acceptance model (TAM) is a lot of cited in information technology adoption and usage researches. But TAM has been conducted primarily in volitional environments of the adoption of new technology. This paper discusses technology acceptance in accounting information systems to examine TAM with Characteristics of Organizations and Individuals in mandated using Combined Guard System. Combined Guard System is a scientific guard system that is composed of automated surveillance system, automated sensing system and control system. GOP Scientific Guard System is operated by GOP unit in Korean Army O Division from 2006. In this study, using the extended technology acceptance model, we have analyzed factors which affect the usage intention of GOP Scientific Guard System in mandated using environment. Based upon previous researches, we have selected Support of management unit, Training, Perceived Risk, Subjective Knowledge and Computer Self-efficacy, perceived usefulness, perceived ease of use, and usage intention as variables and proposed a research model. We collected 253 survey questionnaires from Korean army officer and soldier who are serviced at GOP unit in O Division, and analyzed the data using SPSS 12.0 and SmartPLS 2.0M3. According to the results by PLS analysis, According to the results by PLS analysis, Training and Subjective Knowledge did not affect Perceived usefulness, but the other hypotheses were accepted. And Perceived usefulness, and Ease of use influenced the Usage intention. The results of this study will increase Characteristics of Organizations and Individuals on GOP Scientific Guard System and eventually contribute to establishing the activation of Combined Guard System.

The Effectiveness of the Learning Cycle Model for Science Instruction : Preschool Children's Creativity and Scientific Problem Solving Ability (순환학습 모형을 활용한 과학 교수법이 유아들의 창의성과 과학적 문제 해결력에 미치는 효과)

  • Chung, Chung Hee;Park, Yune Bae
    • Korean Journal of Child Studies
    • /
    • v.25 no.3
    • /
    • pp.1-14
    • /
    • 2004
  • This study focused on the development and application of learning cycle model for promoting children's creativity and problem solving ability. The learning cycle approach consists of four phases : awareness, exploration, investigation, and concept application. The program consists of 20 scientific activities. A total of 70 children participated the 10 week program to examine the effectiveness of this model. The experimental design included a pretest, treatment, and posttest. Results showed that the experimental group children scored significantly higher on the creativity and problem solving tests in the posttest than the control group children.

  • PDF

The Effects of Science Instruction using Integrative Educational Model(IEM) in Elementary Science Gifted Classes on Academic Achievement and Scientific Attitude (Clark의 통합교육모형(IEM)을 적용한 과학 수업이 초등과학영재반의 학업 성취도와 과학적 태도에 미치는 영향)

  • Bae, Jin-Ho;Kim, Dong-Kook
    • Journal of Korean Elementary Science Education
    • /
    • v.30 no.4
    • /
    • pp.490-503
    • /
    • 2011
  • The purpose of this study was to investigate the effects of science instruction using integrative educational model on academic achievement and scientific attitude in gifted classes on elementary science. Integrative educational model (hereafter referred as IEM) was developed by synthesizing the findings from brain research, the new physics, general systems theory, and educational psychology. 77 6th graders of B Metropolitan City's Elementary Gifted Education Center were took part in this study. The experimental group, consisting of 39 students, was applied to the instruction using IEM, while the comparison group, 38 students, was applied to instructor- led instruction. The results of this study were as follows: First, the science instruction using IEM had a positive effect on improving achievement in gifted classes on elementary science. Second, the science instruction using IEM had an influence on inquisitiveness and openness of the lower domains of learners' scientific attitude. Third, the science instruction using IEM had a positive response to learners' interest, comprehensibility about lesson contents, and ability to concentrate on classes.