• Title/Summary/Keyword: Science and technology classification

Search Result 1,634, Processing Time 0.023 seconds

A Method for Terrain Cover Classification Using DCT Features (DCT 특징을 이용한 지표면 분류 기법)

  • Lee, Seung-Youn;Kwak, Dong-Min;Sung, Gi-Yeul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.683-688
    • /
    • 2010
  • The ability to navigate autonomously in off-road terrain is the most critical technology needed for Unmanned Ground Vehicles(UGV). In this paper, we present a method for vision-based terrain cover classification using DCT features. To classify the terrain, we acquire image from a CCD sensor, then the image is divided into fixed size of blocks. And each block transformed into DCT image then extracts features which reflect frequency band characteristics. Neural network classifier is used to classify the features. The proposed method is validated and verified through many experiments and we compare it with wavelet feature based method. The results show that the proposed method is more efficiently classify the terrain-cover than wavelet feature based one.

A Comparative Study on the KDC, NDC, and DDC Classification System for Civil Engineering (KDC, NDC, DDC의 토목공학 분야 분류체계 비교 연구)

  • Kim, Yeon-Rye
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.20 no.3
    • /
    • pp.219-232
    • /
    • 2009
  • This paper is intended to comparatively analyzed the KDC/NDC/DDC classification system for the field of civil engineering, the research field classification system of National Research Foundation of Korea, and the science and technology research field classification system of Korea Science and Engineering Foundation. And based on the analysis, it tried to propose the ways of improving the KDC classification system for the civil engineering field. As a result of the analysis, this paper has found that the KDC 5th-edition for the civil engineering field needed some corrections. That is, the classification items that reflect the trend of academic development should be added, the classification terminology of the basic theories of civil engineering should be properly developed, segmented topics should be added, any errors in classification codes and Korean/English descriptions should be corrected, and the omission of the KDC relative index of classification items should be solved. This paper proposed the ways of improving those problems.

Sorting for Plastic Bottles Recycling using Machine Vision Methods

  • SanaSadat Mirahsani;Sasan Ghasemipour;AmirAbbas Motamedi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.89-98
    • /
    • 2024
  • Due to the increase in population and consequently the increase in the production of plastic waste, recovery of this part of the waste is an undeniable necessity. On the other hand, the recycling of plastic waste, if it is placed in a systematic process and controlled, can be effective in creating jobs and maintaining environmental health. Waste collection in many large cities has become a major problem due to lack of proper planning with increasing waste from population accumulation and changing consumption patterns. Today, waste management is no longer limited to waste collection, but waste collection is one of the important areas of its management, i.e. training, segregation, collection, recycling and processing. In this study, a systematic method based on machine vision for sorting plastic bottles in different colors for recycling purposes will be proposed. In this method, image classification and segmentation techniques were presented to improve the performance of plastic bottle classification. Evaluation of the proposed method and comparison with previous works showed the proper performance of this method.

A Tuberculosis Detection Method Using Attention and Sparse R-CNN

  • Xu, Xuebin;Zhang, Jiada;Cheng, Xiaorui;Lu, Longbin;Zhao, Yuqing;Xu, Zongyu;Gu, Zhuangzhuang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.7
    • /
    • pp.2131-2153
    • /
    • 2022
  • To achieve accurate detection of tuberculosis (TB) areas in chest radiographs, we design a chest X-ray TB area detection algorithm. The algorithm consists of two stages: the chest X-ray TB classification network (CXTCNet) and the chest X-ray TB area detection network (CXTDNet). CXTCNet is used to judge the presence or absence of TB areas in chest X-ray images, thereby excluding the influence of other lung diseases on the detection of TB areas. It can reduce false positives in the detection network and improve the accuracy of detection results. In CXTCNet, we propose a channel attention mechanism (CAM) module and combine it with DenseNet. This module enables the network to learn more spatial and channel features information about chest X-ray images, thereby improving network performance. CXTDNet is a design based on a sparse object detection algorithm (Sparse R-CNN). A group of fixed learnable proposal boxes and learnable proposal features are using for classification and location. The predictions of the algorithm are output directly without non-maximal suppression post-processing. Furthermore, we use CLAHE to reduce image noise and improve image quality for data preprocessing. Experiments on dataset TBX11K show that the accuracy of the proposed CXTCNet is up to 99.10%, which is better than most current TB classification algorithms. Finally, our proposed chest X-ray TB detection algorithm could achieve AP of 45.35% and AP50 of 74.20%. We also establish a chest X-ray TB dataset with 304 sheets. And experiments on this dataset showed that the accuracy of the diagnosis was comparable to that of radiologists. We hope that our proposed algorithm and established dataset will advance the field of TB detection.

Co-Classification Analysis of Inter-disciplinarity on Solar Cell Research (Co-Classification 방법을 이용한 태양전지 연구의 학제간 다양성 분석)

  • Kim, Min-Ji;Park, Jung-Kyu;Lee, You-Ah;Heo, Eun-Nyeong
    • New & Renewable Energy
    • /
    • v.7 no.1
    • /
    • pp.36-44
    • /
    • 2011
  • Technology is developed from the efficient interaction with other technology files while building up its own research field. This study analyzes the structure of solar cell research area and describes its paths of the technology development in terms of interdisciplinary diversity using the Co-Classification method during 1979-2009. As a results, 1,380 studies are determined as the interdisciplinary among the 2,605 studies. It shows that 52.98% of the solar cell researches have interdisciplinary relationships with two or more research fields. In addition, we show that the research area of solar cell technology is composed by Material Science, Multidisciplinary and Energy & Fuel, Physics, Applied, Chemistry, Physical from the Co-Classification matrix and network analysis. It means the complexity of the technological knowledge production increased with the concept of interdisciplinary. The results can be used for the planning of the efficient solar cell technology development.

Experimental investigation on multi-parameter classification predicting degradation model for rock failure using Bayesian method

  • Wang, Chunlai;Li, Changfeng;Chen, Zeng;Liao, Zefeng;Zhao, Guangming;Shi, Feng;Yu, Weijian
    • Geomechanics and Engineering
    • /
    • v.20 no.2
    • /
    • pp.113-120
    • /
    • 2020
  • Rock damage is the main cause of accidents in underground engineering. It is difficult to predict rock damage accurately by using only one parameter. In this study, a rock failure prediction model was established by using stress, energy, and damage. The prediction level was divided into three levels according to the ratio of the damage threshold stress to the peak stress. A classification predicting model was established, including the stress, energy, damage and AE impact rate using Bayesian method. Results show that the model is good practicability and effectiveness in predicting the degree of rock failure. On the basis of this, a multi-parameter classification predicting deterioration model of rock failure was established. The results provide a new idea for classifying and predicting rockburst.

Application of Deep Learning-Based Nuclear Medicine Lung Study Classification Model (딥러닝 기반의 핵의학 폐검사 분류 모델 적용)

  • Jeong, Eui-Hwan;Oh, Joo-Young;Lee, Ju-Young;Park, Hoon-Hee
    • Journal of radiological science and technology
    • /
    • v.45 no.1
    • /
    • pp.41-47
    • /
    • 2022
  • The purpose of this study is to apply a deep learning model that can distinguish lung perfusion and lung ventilation images in nuclear medicine, and to evaluate the image classification ability. Image data pre-processing was performed in the following order: image matrix size adjustment, min-max normalization, image center position adjustment, train/validation/test data set classification, and data augmentation. The convolutional neural network(CNN) structures of VGG-16, ResNet-18, Inception-ResNet-v2, and SE-ResNeXt-101 were used. For classification model evaluation, performance evaluation index of classification model, class activation map(CAM), and statistical image evaluation method were applied. As for the performance evaluation index of the classification model, SE-ResNeXt-101 and Inception-ResNet-v2 showed the highest performance with the same results. As a result of CAM, cardiac and right lung regions were highly activated in lung perfusion, and upper lung and neck regions were highly activated in lung ventilation. Statistical image evaluation showed a meaningful difference between SE-ResNeXt-101 and Inception-ResNet-v2. As a result of the study, the applicability of the CNN model for lung scintigraphy classification was confirmed. In the future, it is expected that it will be used as basic data for research on new artificial intelligence models and will help stable image management in clinical practice.

The Hybrid Systems for Credit Rating

  • Goo, Han-In;Jo, Hong-Kyuo;Shin, Kyung-Shik
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.22 no.3
    • /
    • pp.163-173
    • /
    • 1997
  • Although numerous studies demonstrate that one technique outperforms the others for a given data set, it is hard to tell a priori which of these techniques will be the most effective to solve a specific problem. It has been suggested that the better approach to classification problem might be to integrate several different forecasting techniques by combining their results. The issues of interest are how to integrate different modeling techniques to increase the predictive performance. This paper proposes the post-model integration method, which tries to find the best combination of the results provided by individual techniques. To get the optimal or near optimal combination of different prediction techniques, Genetic Algorithms (GAs) are applied, which are particularly suitable for multi-parameter optimization problems with an object function subject to numerous hard and soft constraints. This study applies three individual classification techniques (Discriminant analysis, Logit model and Neural Networks) as base models for the corporate failure prediction. The results of composite predictions are compared with the individual models. Preliminary results suggests that the use of integrated methods improve the performance of business classification.

  • PDF

Study of Machine-Learning Classifier and Feature Set Selection for Intent Classification of Korean Tweets about Food Safety

  • Yeom, Ha-Neul;Hwang, Myunggwon;Hwang, Mi-Nyeong;Jung, Hanmin
    • Journal of Information Science Theory and Practice
    • /
    • v.2 no.3
    • /
    • pp.29-39
    • /
    • 2014
  • In recent years, several studies have proposed making use of the Twitter micro-blogging service to track various trends in online media and discussion. In this study, we specifically examine the use of Twitter to track discussions of food safety in the Korean language. Given the irregularity of keyword use in most tweets, we focus on optimistic machine-learning and feature set selection to classify collected tweets. We build the classifier model using Naive Bayes & Naive Bayes Multinomial, Support Vector Machine, and Decision Tree Algorithms, all of which show good performance. To select an optimum feature set, we construct a basic feature set as a standard for performance comparison, so that further test feature sets can be evaluated. Experiments show that precision and F-measure performance are best when using a Naive Bayes Multinomial classifier model with a test feature set defined by extracting Substantive, Predicate, Modifier, and Interjection parts of speech.

An Ensemble Classification of Mental Health in Malaysia related to the Covid-19 Pandemic using Social Media Sentiment Analysis

  • Nur 'Aisyah Binti Zakaria Adli;Muneer Ahmad;Norjihan Abdul Ghani;Sri Devi Ravana;Azah Anir Norman
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.370-396
    • /
    • 2024
  • COVID-19 was declared a pandemic by the World Health Organization (WHO) on 30 January 2020. The lifestyle of people all over the world has changed since. In most cases, the pandemic has appeared to create severe mental disorders, anxieties, and depression among people. Mostly, the researchers have been conducting surveys to identify the impacts of the pandemic on the mental health of people. Despite the better quality, tailored, and more specific data that can be generated by surveys,social media offers great insights into revealing the impact of the pandemic on mental health. Since people feel connected on social media, thus, this study aims to get the people's sentiments about the pandemic related to mental issues. Word Cloud was used to visualize and identify the most frequent keywords related to COVID-19 and mental health disorders. This study employs Majority Voting Ensemble (MVE) classification and individual classifiers such as Naïve Bayes (NB), Support Vector Machine (SVM), and Logistic Regression (LR) to classify the sentiment through tweets. The tweets were classified into either positive, neutral, or negative using the Valence Aware Dictionary or sEntiment Reasoner (VADER). Confusion matrix and classification reports bestow the precision, recall, and F1-score in identifying the best algorithm for classifying the sentiments.