• Title/Summary/Keyword: Science Learning

Search Result 9,709, Processing Time 0.04 seconds

Field Perception Analysis on Policy Outcomes of Academic Libraries (국내 대학도서관 정책 성과에 대한 현장 인식 조사)

  • Jongwook Lee;Woojin Kang;Youngmi Jung
    • Journal of Korean Library and Information Science Society
    • /
    • v.54 no.4
    • /
    • pp.415-436
    • /
    • 2023
  • In this study, we aimed to examine the level of implementation of the second comprehensive plan for promoting academic libraries (2019-2023) by analyzing key statistics of academic libraries and gathering perceptions from library staff. We analyzed the changes in major statistical indicators of libraries over the past five years. Additionally, we surveyed library staff to understand their overall perceptions of the plan and their attitudes towards the 17 sub-tasks outlined in it. The analysis of 369 survey responses revealed several key findings. Firstly, most respondents comprehended the plan well and frequently utilized it for developing their libraries' development and implementation plans. Secondly, the IPA results indicated that regardless of the type of university, there should be a continuous focus on facility improvement, teaching-learning support, and expanding access to academic resources. Efforts to develop library policies and strengthen human and financial resources were identified as crucial. Thirdly, four-year universities particularly emphasized the importance of expanding access to international academic resources compared to junior colleges. Conversely, junior colleges perceived foundational skill-building programs and inclusive services as more significant than four-year universities. The application of the IPA diagonal model revealed that the performance levels of all sub-tasks were lower than their perceived importance levels, suggesting the need for strategies to enhance effectiveness in future comprehensive plan formulation.

The Effect of Mathematics Classes Using AlgeoMath on Mathematical Problem-Solving Ability and Mathematical Attitude: Focusing on the 'Cuboid' Unit of the Fifth Grade in Elementary School (알지오매스 기반 수업이 수학적 문제해결력 및 태도에 미치는 효과: 초등학교 5학년 '직육면체' 단원을 중심으로)

  • Seung Dong Lee;Jong Hak Lee
    • Journal of Science Education
    • /
    • v.48 no.1
    • /
    • pp.47-62
    • /
    • 2024
  • The purpose of this study is to investigate the effects of classes using AlgeoMath on fifth grade elementary students' mathematical problem-solving skills and mathematical attitudes. For this purpose, the 'cuboid' section of the 5th grade elementary textbook based on AlgeoMath was reorganized. A total of 8 experimental classes were conducted using this teaching and learning material. And the quantitative data collected before and after the experimental lesson were statistically analyzed. In addition, by presenting instances of experimental lessons using AlgeoMath, we investigated the effectiveness and reality of classes using engineering in terms of mathematical problem-solving ability and attitude. The results of this study are as follows. First, in the mathematical problem-solving ability test, there was a significant difference between the experimental group and the comparison group at the significance level. In other words, lessons using AlgeoMath were found to be effective in increasing mathematical problem-solving skills. Second, in the mathematical attitude test, there was no significant difference between the experimental group and the comparison group at the significance level. However, the average score of the experimental group was found to be higher than that of the comparison group for all sub-elements of mathematical attitude.

Development of an Anomaly Detection Algorithm for Verification of Radionuclide Analysis Based on Artificial Intelligence in Radioactive Wastes (방사성폐기물 핵종분석 검증용 이상 탐지를 위한 인공지능 기반 알고리즘 개발)

  • Seungsoo Jang;Jang Hee Lee;Young-su Kim;Jiseok Kim;Jeen-hyeng Kwon;Song Hyun Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.1
    • /
    • pp.19-32
    • /
    • 2023
  • The amount of radioactive waste is expected to dramatically increase with decommissioning of nuclear power plants such as Kori-1, the first nuclear power plant in South Korea. Accurate nuclide analysis is necessary to manage the radioactive wastes safely, but research on verification of radionuclide analysis has yet to be well established. This study aimed to develop the technology that can verify the results of radionuclide analysis based on artificial intelligence. In this study, we propose an anomaly detection algorithm for inspecting the analysis error of radionuclide. We used the data from 'Updated Scaling Factors in Low-Level Radwaste' (NP-5077) published by EPRI (Electric Power Research Institute), and resampling was performed using SMOTE (Synthetic Minority Oversampling Technique) algorithm to augment data. 149,676 augmented data with SMOTE algorithm was used to train the artificial neural networks (classification and anomaly detection networks). 324 NP-5077 report data verified the performance of networks. The anomaly detection algorithm of radionuclide analysis was divided into two modules that detect a case where radioactive waste was incorrectly classified or discriminate an abnormal data such as loss of data or incorrectly written data. The classification network was constructed using the fully connected layer, and the anomaly detection network was composed of the encoder and decoder. The latter was operated by loading the latent vector from the end layer of the classification network. This study conducted exploratory data analysis (i.e., statistics, histogram, correlation, covariance, PCA, k-mean clustering, DBSCAN). As a result of analyzing the data, it is complicated to distinguish the type of radioactive waste because data distribution overlapped each other. In spite of these complexities, our algorithm based on deep learning can distinguish abnormal data from normal data. Radionuclide analysis was verified using our anomaly detection algorithm, and meaningful results were obtained.

Development of Urban Wildlife Detection and Analysis Methodology Based on Camera Trapping Technique and YOLO-X Algorithm (카메라 트래핑 기법과 YOLO-X 알고리즘 기반의 도시 야생동물 탐지 및 분석방법론 개발)

  • Kim, Kyeong-Tae;Lee, Hyun-Jung;Jeon, Seung-Wook;Song, Won-Kyong;Kim, Whee-Moon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.4
    • /
    • pp.17-34
    • /
    • 2023
  • Camera trapping has been used as a non-invasive survey method that minimizes anthropogenic disturbance to ecosystems. Nevertheless, it is labor-intensive and time-consuming, requiring researchers to quantify species and populations. In this study, we aimed to improve the preprocessing of camera trapping data by utilizing an object detection algorithm. Wildlife monitoring using unmanned sensor cameras was conducted in a forested urban forest and a green space on a university campus in Cheonan City, Chungcheongnam-do, Korea. The collected camera trapping data were classified by a researcher to identify the occurrence of species. The data was then used to test the performance of the YOLO-X object detection algorithm for wildlife detection. The camera trapping resulted in 10,500 images of the urban forest and 51,974 images of green spaces on campus. Out of the total 62,474 images, 52,993 images (84.82%) were found to be false positives, while 9,481 images (15.18%) were found to contain wildlife. As a result of wildlife monitoring, 19 species of birds, 5 species of mammals, and 1 species of reptile were observed within the study area. In addition, there were statistically significant differences in the frequency of occurrence of the following species according to the type of urban greenery: Parus varius(t = -3.035, p < 0.01), Parus major(t = 2.112, p < 0.05), Passer montanus(t = 2.112, p < 0.05), Paradoxornis webbianus(t = 2.112, p < 0.05), Turdus hortulorum(t = -4.026, p < 0.001), and Sitta europaea(t = -2.189, p < 0.05). The detection performance of the YOLO-X model for wildlife occurrence was analyzed, and it successfully classified 94.2% of the camera trapping data. In particular, the number of true positive predictions was 7,809 images and the number of false negative predictions was 51,044 images. In this study, the object detection algorithm YOLO-X model was used to detect the presence of wildlife in the camera trapping data. In this study, the YOLO-X model was used with a filter activated to detect 10 specific animal taxa out of the 80 classes trained on the COCO dataset, without any additional training. In future studies, it is necessary to create and apply training data for key occurrence species to make the model suitable for wildlife monitoring.

Discussion on Detection of Sediment Moisture Content at Different Altitudes Employing UAV Hyperspectral Images (무인항공 초분광 영상을 기반으로 한 고도에 따른 퇴적물 함수율 탐지 고찰)

  • Kyoungeun Lee;Jaehyung Yu;Chanhyeok Park;Trung Hieu Pham
    • Economic and Environmental Geology
    • /
    • v.57 no.4
    • /
    • pp.353-362
    • /
    • 2024
  • This study examined the spectral characteristics of sediments according to moisture content using an unmanned aerial vehicle (UAV)-based hyperspectral sensor and evaluated the efficiency of moisture content detection at different flight altitudes. For this purpose, hyperspectral images in the 400-1000nm wavelength range were acquired and analyzed at altitudes of 40m and 80m for sediment samples with various moisture contents. The reflectance of the sediments generally showed a decreasing trend as the moisture content increased. Correlation analysis between moisture content and reflectance showed a strong negative correlation (r < -0.8) across the entire 400-900nm range. The moisture content detection model constructed using the Random Forest technique showed detection accuracies of RMSE 2.6%, R2 0.92 at 40m altitude and RMSE 2.2%, R2 0.95 at 80m altitude, confirming that the difference in accuracy between altitudes was minimal. Variable importance analysis revealed that the 600-700nm band played a crucial role in moisture content detection. This study is expected to be utilized in efficient sediment moisture management and natural disaster prediction in the field of environmental monitoring in the future.

What Pre-service Elementary School Teachers Focus on When Developing Assessment Items: Focusing on the Unit 'Weather and Our Lives' (초등 예비교사가 평가 문항 제작 시 주목하는 것은 무엇인가? : 날씨와 우리 생활 단원을 중심으로)

  • Sung-Man Lim;Seong-Un Kim
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.17 no.2
    • /
    • pp.181-193
    • /
    • 2024
  • Summative assessment provides information on how well students have achieved learning objectives, making the development of high-quality assessment items essential for accurate evaluation. This is one of the competencies that teachers must possess. This study aims to analyze summative assessment items created by pre-service elementary teachers, examining their intentions and the difficulties encountered in the item development process. The study involved 45 second-year students enrolled in an elementary teacher training university. They were grouped into teams of three and tasked with developing ten items, documenting the purpose of each item, the answer key, and the challenges faced during item creation. The collected summative assessment items were analyzed using a two-dimensional purpose classification table that includes Klopfer's taxonomy of educational objectives. The intentions behind the summative assessments and the difficulties faced during item development were inductively organized and analyzed through qualitative data analysis. The results revealed that pre-service elementary teachers adequately reflected scientific content elements but did not evenly cover assessment domains. The most challenging aspect for them was adjusting the difficulty level. Although they considered most factors that should be taken into account during item development, these considerations were not reflected in the actual items. These findings suggest that knowledge and experience are crucial in developing summative assessment items, and systematic lectures are necessary for pre-service elementary teachers.

An Investigation on the Assessment Tool and Status of Assessment in the 'Scientific Inquiry Experiment' of the 2015 Revised Curriculum (2015 개정 교육과정 '과학탐구실험' 평가 도구 및 평가 현황 탐색)

  • Baek, Jongho;Byun, Taejin;Lee, Dongwon;Shim, Hyeon-Pyo
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.5
    • /
    • pp.515-529
    • /
    • 2020
  • 'Scientific inquiry experiments', which was newly created subjects in the 2015 revised curriculum, was expected in the aspect of learning science and developing core competences through science practices. Based on changed view of evaluation, assessments of a practice-centered subject 'Scientific inquiry experiments' should be try to conducted in various ways, but many challenges were reported. In this study, through analysis of current status of assessment of the subject, we intended to find the way of conducting and supporting 'Scientific inquiry experiments'. We collected assessment materials and explanatory description about them from 25 teachers who taught 'Scientific inquiry experiments' in 2018 and 2019. And we analyzed the cases with framework which were consisted with three main categories: elements, standards, methods of assessments. Also, we investigated how the results of assessment were utilized. For the validity, we requested verification of the results of our data analysis to experts of science education and science teachers. From them, we also collected their opinions about our analysis. As a result of the study, teachers assessed some elements of inquiry skills such as 'analysis and interpreting the data', 'conducting inquiry' more than others which were closely related to what subject-matter the teachers used to organized inquiry program with. In the aspect of domain of assessments, though cognitive domain and affective domain as well as skills were evaluated, we also found that the assessment of those domains had some limitation. In terms of standard of assessment, the goals of assessment were presented in most cases, but there were relatively few cases which had the specific criteria and the stepwise statements of expected performance of students. The time and subject of the assessment were mainly post-class and teachers, and others such as in-class assessments, peer-assessments were used only in specific contexts. In all cases, the results of assessments used for calculating students' grade, but in some cases, we could observe that the results used for improving teaching and feedback for students. Based on these results, we discussed how to support the assessments of 'Scientific inquiry experiments'.

Elementary Schooler's Recognition and Understanding of the Scientific Units in Daily Life (초등학교 학생들의 생활 속 과학단위 인식과 이해)

  • Kim, Sung-Kyu
    • Journal of Science Education
    • /
    • v.36 no.2
    • /
    • pp.235-250
    • /
    • 2012
  • This paper aims to find out whether or not elementary school students recognize and understand scientific units that they encounter in their everyday life. To select appropriate units for the survey, first, scientific units in elementary textbooks of science and other science related subjects were analyzed. Then it was examined how these units were related to the learners' daily life. The participants in the current survey were 320 elementary school 6th graders. A questionnaire consisted of 11 units of science, such as kg for mass, km for distance, L for volume, V for voltage, s for time, $^{\circ}C$ for temperature, km/h for speed, kcal for heat, % for percentage, W for electric power, pH for acidity, which can often be seen and used in daily life. The students were asked to do the following four tasks, (1) to see presented pictures and select appropriate scientific units, (2) to write reasons for choosing the units, (3) to answer what the units are used for, and (4) to check where to find the units. The data were analyzed in terms of the percentage of the students who seemed to well recognize and understand the units, using SPSS 17.0 statistical program. The results are as follows: Regarding the general use of the units, it was revealed that almost the same units were repeated in science and other subject textbooks from the same grade. With an increase of the students' grade more difficult units were used. As for the use of each unit, it was found that they seemed to relatively well understand what these units kg, km, L, $^{\circ}C$, kcal, km/h, and W stand for, showing more than 91% right. However, the units of V, s, in particular, %, and pH did not seem to be understood. With respect to the recognition of the units, most students did not recognize such units as L for volume and pH for acidity, probably because the units are difficult at the elementary level in comparison to other scientific units. The students indicated that schools were the best place where they could learn and find scientific units related to life, followed by shops/marts, newspapers/broadcasting, streets/roads, homes, and others in that order. The results show that scientific unit learning should be conducted in a systematic way at school and that teachers can play a major role in improving students' understanding and use of the units.

  • PDF

How does the introduction of smart technology change school science inquiry?: Perceptions of elementary school teachers (스마트 기기 도입이 과학탐구 활동을 어떻게 변화시킬 것인가? -교육대학원 초등과학 전공 교사의 인식 사례를 중심으로-)

  • Chang, Jina;Joung, Yong Jae
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.2
    • /
    • pp.359-370
    • /
    • 2017
  • The purpose of this study is to explore the changes caused by using smart technology in school science inquiry. For this, we investigated 12 elementary school teachers' perceptions by using an open-ended questionnaire, group discussions, classroom discussions, and participant interviews. The results of this study indicate that the introduction of technology into classroom inquiry can open up the various possibilities and can cause additional burdens as well. First, teachers explained that smart technology can expand the opportunities to observe natural phenomena such as constellations and changing phases of the moon. However, some teachers insisted that, sometimes, learning how to use new devices disrupts students' concentration on the inquiry process itself. Second, teachers introduced the way of digital measurement using smart phone sensors in inquiry activities. They said that digital measurement is useful in terms of the reduction of errors and of the simplicity to measure. However, other teachers insisted that using new devices in classroom inquiry can entail additional variables and confuse the students' focus of inquiry. Communication about inquiry process can also be improved by using digital media. However, some teachers emphasized that they always talked about both the purpose of using SNS and online etiquettes with their students before using SNS. Based on these results, we discussed the necessity of additional analysis on the various ways of using digital devices depending on teachers' perceptions, the types of digital competency required in science inquiry using smart technology, and the features of norms shaped in inquiry activities using smart technology.

Developing Systems Thinking-based STEAM Programs and Analyzing its Effects on Middle School Students (중학생을 위한 시스템 사고 기반 STEAM 교육 프로그램의 개발 및 효과 분석)

  • Kim, Yuran;Jeon, Jaedon;Eom, Jooyoung;Lee, Hyonyong
    • Journal of the Korean earth science society
    • /
    • v.41 no.1
    • /
    • pp.75-91
    • /
    • 2020
  • The purposes of this study are 1) to develop a pre-education program for teaching the basic concepts of systems thinking and STEAM program based on systems thinking and 2) to investigate the effects of the program on middle school students' systems thinking. The subjects were 4 seventh-graders and 4 ninth-graders in a middle school located in the province of Gyeongsangbuk-do. Data related to students' systems thinking was analyzed using the rubrics developed by Hung(2008). The results were reviewed by experts to verify the validity of the rubrics and the reliability of students' system thinking. In addition, the data analyzed with the rubrics, students' awareness of systems thinking, word associations, causal maps and interviews were systematically analyzed to investigate the effects of the program on students' systems thinking. The findings of this study were as follows: First, a pre-education program and teachers' guidebook for teaching and learning the concept of systems thinking and causal maps were developed. The pre-education program consisted of familiar TV entertainment program-Infinite Challenge (Muhandojeon)-with a theme of Global Warming. Second, a STEAM education program based on systems thinking which was composed of 5 steps: Analysis-Design-Build-Assessment-Systems thinking. The major theme of the program was an air extinguisher. The developed STEAM education program had positive effects on improving middle school students' systems thinking abilities such as understanding systems, relations within a system and system generalization. Therefore, it was concluded that the STEAM program could be instrumental for cultivating students' STEAM literacy with improved systems thinking.