• Title/Summary/Keyword: Scheduling optimization

Search Result 454, Processing Time 0.038 seconds

A Study of Flight Scheduling Problem on Fighter Squadron (전투비행대대 비행스케줄링에 관한 연구)

  • Lee, Moongul;Seo, Sanghoon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.39 no.2
    • /
    • pp.37-48
    • /
    • 2014
  • Fighter squadron flight scheduling is the integrated air operation plan that is an important role for improving pilot's flight skill and maintaining combat readiness by efficient using available all air resources including pilot, aircrafts, air-weapons, fuel and supporting facilities etc. Korea airforce, however, has a limit as to an effective flight operation due to manual flight scheduling with scheduler's own experience and intuition. Therefore, in our study, we propose the optimization model of flight scheduling based on mixed integer programming. This model includes several constraints of realistic and essential quantified data related with flight schedule and can assign appropriate pilots optimally which are distinctive three type's solutions : flight, alert and duty crew schedules. Proposed solution method can be improved pilot's capability and allocated further air resources systematically and efficiently. In addition, it can be reduced a workload of flight scheduler and minimized obstructed factors of flight safety. Finally, we demonstrate the experiment's results for the check of efficiency and validity of this model.

An Effective Priority Method Using Generator's Discrete Sensitivity Value for Large-scale Preventive Maintenance Scheduling (발전기 이산 민감도를 이용한 효율적인 우선순위법의 대규모 예방정비계획 문제에의 적용 연구)

  • Park, Jong-Bae;Jeong, Man-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.234-240
    • /
    • 1999
  • This paper presents a new approach for large-scale generator maintenance scheduling optimizations. The generator preventive maintenance scheduling problems are typical discrete dynamic n-dimensional vector optimization ones with several inequality constraints. The considered objective function to be minimized a subset of{{{{ { R}^{n } }}}} space is the variance (i.g., second-order momentum) of operating reserve margin to levelize risk or reliability during a year. By its nature of the objective function, the optimal solution can only be obtained by enumerating all combinatorial states of each variable, a task which leads to computational explosion in real-world maintenance scheduling problems. This paper proposes a new priority search mechanism based on each generator's discrete sensitivity value which was analytically developed in this study. Unlike the conventional capacity-based priority search, it can prevent the local optimal trap to some extents since it changes dynamically the search tree in each iteration. The proposed method have been applied to two test systems (i.g., one is a sample system with 10 generators and the other is a real-world lage scale power system with 280 generators), and the results anre compared with those of the conventional capacith-based search method and combinatorial optimization method to show the efficiency and effectiveness of the algorithm.

  • PDF

The Operational Optimization of Semiconductor Research and Development Fabs by FAB-wide Scheduling (FAB-Wide 스케줄링을 통한 반도체 연구라인의 운용 최적화)

  • Kim, Young-Ho;Lee, Jee-Hyong;Sun, Dong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.692-699
    • /
    • 2008
  • Semiconductor research and development(R&D) fabs are very different than production fabs in many ways such as the scales of production, job priority, production methods, and performance measures. Efficient operations of R&D fabs are very important to the development of new product, process stability, high yield, and ultimately company competitiveness. This paper proposes the fab-wide scheduling method for operational optimization of the R&D fabs. Most scheduling systems of semiconductor fabs have only focused on maximizing throughput of each separated areas without considering WIP(works in process) flows of entire fab. In this paper, we proposes the a fab-wide scheduling system which schedules all lots to entire fab equipment at once. We develop the MIP(mixed integer programing) model which allocates the lots to production equipment considering many constraints of all processes and the CP(constraint programming) model which determines the sequences of the lots in the production equipment. The proposed FAB-wide scheduling model is applied to the newly constructed R&D fab. As a result, we have accomplished the system based automated job reservation, decrease of the hot lot delay, increase of the queue time satisfaction, the high throughput by maximizing the batch sizes, decrease of the WIP TAT(Turn Around Time).

SIMULATED ANNEALING FOR LINEAR SCHEDULING PROJECTS WITH MULTIPLE RESOURCE CONSTRAINTS

  • C.I. Yen
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.530-539
    • /
    • 2007
  • Many construction projects such as highways, pipelines, tunnels, and high-rise buildings typically contain repetitive activities. Research has shown that the Critical Path Method (CPM) is not efficient in scheduling linear construction projects that involve repetitive tasks. Linear Scheduling Method (LSM) is one of the techniques that have been developed since 1960s to handle projects with repetitive characteristics. Although LSM has been regarded as a technique that provides significant advantages over CPM in linear construction projects, it has been mainly viewed as a graphical complement to the CPM. Studies of scheduling linear construction projects with resource consideration are rare, especially with multiple resource constraints. The objective of this proposed research is to explore a resource assignment mechanism, which assigns multiple critical resources to all activities to minimize the project duration while satisfying the activities precedence relationship and resource limitations. Resources assigned to an activity are allowed to vary within a range at different stations, which is a combinatorial optimization problem in nature. A heuristic multiple resource allocation algorithm is explored to obtain a feasible initial solution. The Simulated Annealing search algorithm is then utilized to improve the initial solution for obtaining near-optimum solutions. A housing example is studied to demonstrate the resource assignment mechanism.

  • PDF

Optimal Replacement Scheduling of Water Pipelines

  • Ghobadi, Fatemeh;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.145-145
    • /
    • 2021
  • Water distribution networks (WDNs) are designed to satisfy water requirement of an urban community. One of the central issues in human history is providing sufficient quality and quantity of water through WDNs. A WDN consists of a great number of pipelines with different ages, lengths, materials, and sizes in varying degrees of deterioration. The available annual budget for rehabilitation of these infrastructures only covers part of the network; thus it is important to manage the limited budget in the most cost-effective manner. In this study, a novel pipe replacement scheduling approach is proposed in order to smooth the annual investment time series based on a life cycle cost assessment. The proposed approach is applied to a real WDN currently operating in South Korea. The proposed scheduling plan considers both the annual budget limitation and the optimum investment on pipes' useful life. A non-dominated sorting genetic algorithm is used to solve a multi-objective optimization problem. Three decision-making objectives, including the minimum imposed LCC of the network, the minimum standard deviation of annual cost, and the minimum average age of the network, are considered to find optimal pipe replacement planning over long-term time period. The results indicate that the proposed scheduling structure provides efficient and cost-effective rehabilitation management of water network with consistent annual budget.

  • PDF

A Method of Genetic Algorithm Based Multiobjective Optimization via Cooperative Coevolution

  • Lee, Jong-Soo;Kim, Do-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2115-2123
    • /
    • 2006
  • The paper deals with the identification of Pareto optimal solutions using GA based coevolution in the context of multiobjective optimization. Coevolution is a genetic process by which several species work with different types of individuals in parallel. The concept of cooperative coevolution is adopted to compensate for each of single objective optimal solutions during genetic evolution. The present study explores the GA based coevolution, and develops prescribed and adaptive scheduling schemes to reflect design characteristics among single objective optimization. In the paper, non-dominated Pareto optimal solutions are obtained by controlling scheduling schemes and comparing each of single objective optimal solutions. The proposed strategies are subsequently applied to a three-bar planar truss design and an energy preserving flywheel design to support proposed strategies.

OPTIMAL PERIOD AND PRIORITY ASSIGNMENT FOR A NETWORKED CONTROL SYSTEM SCHEDULED BY A FIXED PRIORITY SCHEDULING SYSTEM

  • Shin, M.;SunWoo, M.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.39-48
    • /
    • 2007
  • This paper addresses the problem of period and priority assignment in networked control systems (NCSs) using a fixed priority scheduler. The problem of assigning periods and priorities to tasks and messages is formulated as an optimization problem to allow for a systematic approach. The temporal characteristics of an NCS should be considered by defining an appropriate performance index (PI) which represents the temporal behavior of the NCS. In this study, the sum of the end-to-end response times required to process all I/Os with precedence relationships is defined as a PI. Constraints are derived from the task and message deadline requirements to guarantee schedulability. Genetic algorithms are used to solve this constrained optimization problem because the optimization formulation is discrete and nonlinear. By considering the effects of communication, an optimum set of periods and priorities can be holistically derived.

RFID-Based Integrated Decision Making Framework for Resource Planning and Process Scheduling for a Pharmaceutical Intermediates Manufacturing Plant (의약품 중간체 생산 공정의 전사적 자원 관리 및 생산 계획 수립을 위한 최적 의사결정 시스템)

  • Jeong, Changjoo;Cho, Seolhee;Kim, Jiyong
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.346-355
    • /
    • 2020
  • This study proposed a new optimization-based decision model for an enterprise resource planning and production scheduling of a pharmaceutical intermediates manufacturing plant. To do this work, we first define the inflow and outflow information as well as the model structure, and develop an optimization model to minimize the production time (i.e., makespan) using a mixed integer linear programing (MILP). The unique feature of the proposed model is that the optimal process scheduling is established based on real-time resource logistics information using a radio frequency identification (RFID) technology, thereby theoretically requiring no material inventories. essential information for process operation, such as the required amount of raw materials and estimated arrival timing to manufacturing plant, is used as logistics constraints in the optimization model to yield the optimal manufacturing scheduling to satisfy final production demands. We illustrated the capability of the proposed decision model by applying the optimization model to two scheduling problems in a real pharmaceutical intermediates manufacturing process. As a result, the optimal production schedule and raw materials order timing were identified to minimize the makespan while satisfying all the product demands.

A Study on Low Power Force-Directed scheduling for Optimal module selection Architecture Synthesis (최적 모듈 선택 아키텍쳐 합성을 위한 저전력 Force-Directed 스케쥴링에 관한 연구)

  • Choi Ji-young;Kim Hi-seok
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.459-462
    • /
    • 2004
  • In this paper, we present a reducing power consumption of a scheduling for module selection under the time constraint. A a reducing power consumption of a scheduling for module selection under the time constraint execute scheduling and allocation for considering the switching activity. The focus scheduling of this phase adopt Force-Directed Scheduling for low power to existed Force-Directed Scheduling. and it constructs the module selection RT library by in account consideration the mutual correlation of parameters in which the power and the area and delay. when it is, in this paper we formulate the module selection method as a multi-objective optimization and propose a branch and bound approach to explore the large design space of module selection. Therefore, the optimal module selection method proposed to consider power, area, delay parameter at the same time. The comparison experiment analyzed a point of difference between the existed FDS algorithm and a new FDS_RPC algorithm.

  • PDF

UNIK-OPT를 이용한 지식과 최적화 모형의 관리 - 정유산업사례

  • 김민용;이재규
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1993.04a
    • /
    • pp.109-118
    • /
    • 1993
  • This paper describes the management of knowledge base and optimization models using knowledge-assisted optimization model formulation system UNIK-OPT (UNIfied Knowledge-OPTimization). We will illustrate UNIK-OPT with the case of production scheduling in refinery.

  • PDF