• Title/Summary/Keyword: Schatten p-class

Search Result 4, Processing Time 0.013 seconds

SCHATTEN CLASSES OF MATRICES IN A GENERALIZED B(l2)

  • Rakbud, Jitti;Chaisuriya, Pachara
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.29-40
    • /
    • 2010
  • In this paper, we study a generalization of the Banach space B($l_2$) of all bounded linear operators on $l_2$. Over this space, we present some reasonable ways to define Schatten-type classes which are generalizations of the classical Schatten classes of compact operators on $l_2$.

On Self-commutator Approximants

  • Duggal, Bhagwati Prashad
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • Let B(X) denote the algebra of operators on a complex Banach space X, H(X) = {h ${\in}$ B(X) : h is hermitian}, and J(X) = {x ${\in}$ B(X) : x = $x_1$ + $ix_2$, $x_1$ and $x_2$ ${\in}$ H(X)}. Let ${\delta}_a$ ${\in}$ B(B(X)) denote the derivation ${\delta}_a$ = ax - xa. If J(X) is an algebra and ${\delta}_a^{-1}(0){\subseteq}{\delta}_{a^*}^{-1}(0)$ for some $a{\in}J(X)$, then ${\parallel}a{\parallel}{\leq}{\parallel}a-(x^*x-xx^*){\parallel}$ for all $x{\in}J(X){\cap}{\delta}_a^{-1}(0)$. The cases J(X) = B(H), the algebra of operators on a complex Hilbert space, and J(X) = $C_p$, the von Neumann-Schatten p-class, are considered.

SPECTRAL PROPERTIES OF VOLTERRA-TYPE INTEGRAL OPERATORS ON FOCK-SOBOLEV SPACES

  • Mengestie, Tesfa
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1801-1816
    • /
    • 2017
  • We study some spectral properties of Volterra-type integral operators $V_g$ and $I_g$ with holomorphic symbol g on the Fock-Sobolev spaces ${\mathcal{F}}^p_{{\psi}m}$. We showed that $V_g$ is bounded on ${\mathcal{F}}^p_{{\psi}m}$ if and only if g is a complex polynomial of degree not exceeding two, while compactness of $V_g$ is described by degree of g being not bigger than one. We also identified all those positive numbers p for which the operator $V_g$ belongs to the Schatten $S_p$ classes. Finally, we characterize the spectrum of $V_g$ in terms of a closed disk of radius twice the coefficient of the highest degree term in a polynomial expansion of g.

MULTIPLIERS FOR OPERATOR-VALUED BESSEL SEQUENCES AND GENERALIZED HILBERT-SCHMIDT CLASSES

  • KRISHNA, K. MAHESH;JOHNSON, P. SAM;MOHAPATRA, R.N.
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.1_2
    • /
    • pp.153-171
    • /
    • 2022
  • In 1960, Schatten studied operators of the form $\sum_{n=1}^{{\infty}}\;{\lambda}_n(x_n{\otimes}{\bar{y_n}})$, where {xn}n and {yn}n are orthonormal sequences in a Hilbert space, and {λn}n ∈ ℓ(ℕ). Balazs generalized some of the results of Schatten in 2007. In this paper, we further generalize results of Balazs by studying the operators of the form $\sum_{n=1}^{{\infty}}\;{\lambda}_n(A^*_nx_n{\otimes}{\bar{B^*_ny_n}})$, where {An}n and {Bn}n are operator-valued Bessel sequences, {xn}n and {yn}n are sequences in the Hilbert space such that {║xn║║yn║}n ∈ ℓ(ℕ). We also generalize the class of Hilbert-Schmidt operators studied by Balazs.