• Title/Summary/Keyword: Scenario acceleration

Search Result 57, Processing Time 0.025 seconds

Seismic Behavior of Inverted T-type Wall under Earthquake Part I : Verification of the Numerical Modeling Techniques (역T형 옹벽의 지진시 거동특성 Part I : 수치해석 모델링 기법의 검증)

  • Lee, Jin-sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Permanent deformation plays a key role in performance based earthquake resistant design. In order to estimate permanent deformation after earthquake, it is essential to secure reliable response history analysis(RHA) as well as earthquake scenario. This study focuses on permanent deformation of an inverted T-type wall under earthquake. The study is composed of two separate parts. The first one is on the verification of RHA and the second one is on an effect of input earthquake motion. The former is discussed in this paper and the latter in the companion paper. The verification is conducted via geotechnical dynamic centrifuge test in prototype scale. Response of wall stem, ground motions behind the wall obtained from RHA matched pretty well with physical test performed under centrifugal acceleration of 50g. The rigorously verified RHA is used for parametric study to investigate an effect of input earthquake motion selection in the companion paper.

GUIDANCE LAW FOR IMPACT TIME AND ANGLE CONTROL WITH CONTROL COMMAND RESHAPING

  • LEE, JIN-IK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.3
    • /
    • pp.271-287
    • /
    • 2015
  • In this article, a more generalized form of the impact time and angle control guidance law is proposed based on the linear quadratic optimal control methodology. For the purpose on controlling an additional constraint such as the impact time, we introduce an additional state variable that is defined to be the jerk (acceleration rate). Additionally, in order to provide an additional degree of freedom in choosing the guidance gains, the performance index that minimizes the control energy weighted by an arbitrary order of time-to-go is considered in this work. First, the generalized form of the impact angle control guidance law with an additional term which is used for the impact time control is derived. And then, we also determine the additional term in order to achieve the desired impact time. Through numbers of numerical simulations, we investigate the superiority of the proposed guidance law compared to previous guidance laws. In addition, a salvo attack scenario with multiple missile systems is also demonstrated.

Estimation of Design Rainfalls Considering BCM2 Simulation Results (BCM2 모의 결과를 반영한 목표연도 확률강우량 산정)

  • Lee, Chang Hwan;Kim, Tae-Woong;Kyoung, Minsoo;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3B
    • /
    • pp.269-276
    • /
    • 2010
  • Climatic disasters are globally soaring due to recent acceleration of global warming. Especially the occurrence frequency of heavy rainfalls is increasing since the rainfall intensity is increasing due to the change of rainfall pattern, This study proposed the non-stationary frequency analysis for estimating design rainfalls in a design target year, considering the change of rainfall pattern through the climatic change scenario. The annual rainfalls, which are regionally downscaled from the BCM2 (A2 scenario) and NCEP data using a K-NN method, were used to estimate the parameters of a probability distribution in a design target year, based on the relationship between annual mean rainfalls and distribution parameters. A Gumbel distribution with a probability weighted method was used in this study. Seoul rainfall data, which are the longest observations in Korea, were used to verified the proposed method. Then, rainfall data at 7 stations, which have statistical trends in observations in 2006, were used to estimate the design rainfalls in 2020. The results indicated that the regional annual rainfalls, which were estimated through the climate change scenario, significantly affect on the design rainfalls in future.

A study on Analysis of Impact Deceleration Characteristics of Railway Freight Car (1차원 해석방법을 이용한 화차의 충돌가속도 분석)

  • Son, Seung Wan;Jung, Hyun Seung;Hwang, Jun Hyeok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.32-38
    • /
    • 2020
  • This study examined the problems of existing vehicles to propose alternatives to improve the crashworthiness of railway freight cars through collision acceleration analysis using a one-dimensional collision analysis method. A collision scenario of railway shunting and crash accidents was selected from the collision accident cases and international standards. A one-dimensional collision simulation using LS-DYNA was performed according to those scenarios. As a result, the acceleration level of the freight wagon was calculated to be under 2g and was predicted to meet the EN 12663 standard in the shunting situation. On the other hand, the result of crash simulation with an impact velocity between 10 and 15 km/h revealed the shock absorber capacity of the railway coupler to be insufficient in a crash situation, resulting in increased acceleration, and carbody deformation could be predicted. As a method of improving the crashworthiness, a deformation tube-type energy absorber was applied to the coupler system, and collision analysis was performed again with new energy absorption strategy. Overall, the simulation showed that the acceleration level was decreased by 12% of the conventional freight-car energy absorption system.

A Study on Scenario-based Urban Flood Prediction using G2D Flood Analysis Model (G2D 침수해석 모형을 이용한 시나리오 기반 도시 침수예측 연구)

  • Hui-Seong Noh;Ki-Hong Park
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.488-494
    • /
    • 2023
  • In this paper, scenario-based urban flood prediction for the entire Jinju city was performed, and a simulation domain was constructed using G2D as a 2-dimensional urban flood analysis model. The domain configuration is DEM, and the land cover map is used to set the roughness coefficient for each grid. The input data of the model are water level, water depth and flow rate. In the simulation of the built G2D model, virtual rainfall (3 mm/10 min rainfall given to all grids for 5 hours) and virtual flow were applied. And, a GPU acceleration technique was applied to determine whether to run the flood analysis model in the target area. As a result of the simulation, it was confirmed that the high-resolution flood analysis time was significantly shortened and the flood depth for visual flood judgment could be created for each simulation time.

Enhanced Attitude Determination with IMU using Estimation of Lever Arms (레버암 상태 추정을 이용한 IMU 의 자세 결정 알고리즘)

  • Fang, Tae Hyun;Oh, Jaeyong;Park, Sekil;Park, Byoun-Jae;Cho, Deuk-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.10
    • /
    • pp.941-946
    • /
    • 2013
  • In this paper, an enhanced method for attitude determination is proposed for systems using an IMU (Inertial Measurement Unit). In attitude determination with IMU, it is generally assumed that the IMU can be located in the center of gravity on the vehicle. If the IMU is not located in the center of gravity, the accelerometers of the IMU are disturbed from additive accelerations such as centripetal acceleration and tangential acceleration. Additive accelerations are derived from the lever arm which is the distance between the center of gravity and the position of the IMU. The performance of estimation errors can be maintained in system with a non-zero lever arm, if the lever arm is estimated to remove the additive accelerations from the accelerometer's measurements. In this paper, an estimation using Kalman filter is proposed to include the lever arm in the state variables of the state space equation. For the Kalman filter, the process model and the measurement model for attitude determination are made up by using quaternion. In order to evaluate the proposed algorithm, both of the simulations and the experiments are performed for the simplified scenario of motion.

Capturing and Modeling of Driving Skills Under a Three Dimensional Virtual Reality System Based on Hybrid System

  • Kim, Jong-Hae;Hayakawa, Soichiro;Suzuki, Tatsuya;Hirana, Kazuaki;Matsui, Yoshimichi;Okuma, Shigeru;Tsuchida, Nuio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2747-2752
    • /
    • 2003
  • This paper has develops a new framework to understand the human’s driving maneuver based on the expression as HDS focusing on the driver’s stopping maneuver. The driving data has been collected by using the three-dimensional driving simulator based on CAVE, which provides three-dimensional visual information. In our modeling, the relationship between the measured information such as distance to the stop line, its first and second derivatives and the braking amount has been expressed by the PWPS model, which is a class of HDS. The key idea to solve the identification problem was to formulate the problem as the MILP with replacing the switching conditions by binary variables. From the obtained results, it is found that the driver appropriately switches the ‘control law’ according to the following scenario: At the beginning of the stopping behavior (just after finding the stopping point), the driver decelerate the vehicle based on the acceleration information, and then switch to the control law based on the distance to the stop line.

  • PDF

Extended Kalman Filter Based Relative State Estimation for Satellites in Formation Flying (확장형 칼만 필터를 이용한 인공위성 편대비행 상대 상태 추정)

  • Lee, Young-Gu;Bang, Hyo-Choong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.962-969
    • /
    • 2007
  • In this paper, an approach is developed for relative state estimation of satellite formation flying. To estimate relative states of two satellites, the Extended Kalman Filter Algorithm is adopted with the relative distance and speed between two satellites and attitude of satellite for measurements. Numerical simulations are conducted under two circumstances. The first one presents both chief and deputy satellites are orbiting a circular reference orbit around a perfectly spherical Earth model with no disturbing acceleration, in which the elementary relative orbital motion is taken into account. In reality, however, the Earth is not a perfect sphere, but rather an oblate spheroid, and both satellites are under the effect of $J_2$ geopotential disturbance, which causes the relative distance between two satellites to be on the gradual increase. A near-Earth orbit decays as a result of atmospheric drag. In order to remove the modeling error, the second scenario incorporates the effect of the $J_2$ geopotential force, and the atmospheric drag, and the eccentricity in satellite orbit are also considered.

Safety Assessment of a Metal Cask under Aircraft Engine Crash

  • Lee, Sanghoon;Choi, Woo-Seok;Seo, Ki-Seog
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.505-517
    • /
    • 2016
  • The structural integrity of a dual-purpose metal cask currently under development by the Korea Radioactive Waste Agency (KORAD) was evaluated, through numerical simulations and a model test, under high-speed missile impact reflecting targeted aircraft crash conditions. The impact conditions were carefully chosen through a survey on accident cases and recommendations from literature. In the impact scenario, a missile flying horizontally hits the top side of the cask, which is freestanding on a concrete pad, with a velocity of 150 m/s. A simplified missile simulating a commercial aircraft engine was designed from an impact loade-time function available in literature. In the analyses, the dynamic behavior of the metal cask and the integrity of the containment boundary were assessed. The simulation results were compared with the test results for a 1:3 scale model. Although the dynamic behavior of the cask in the model test did not match exactly with the prediction from the numerical simulation, other structural responses, such as the acceleration and strain history during the impact, showed very good agreement. Moreover, the containment function of the cask survived the missile impact as expected from the numerical simulation. Thus, the procedure and methodology adopted in the structural numerical analyses were successfully validated.

Comparison of smartphone accelerometer applications for structural vibration monitoring

  • Cahill, Paul;Quirk, Lucy;Dewan, Priyanshu;Pakrashi, Vikram
    • Advances in Computational Design
    • /
    • v.4 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • Recent generations of smartphones offer accelerometer sensors as a standard feature. While this has led to the development of a number of related applications (apps), there has been no study on their comparative or individual performance against a benchmark. This paper investigates the comparative performance of a number of smartphone accelerometer apps amongst themselves and to a calibrated benchmark accelerometer. A total of 12 apps were selected for testing out of 90 following an initial review. The selected apps were subjected to sinusoidal vibration testing of varying frequency and the response of each compared against the calibrated baseline accelerometer. The performance of apps was quantified using analysis of variance (ANOVA) and test of significance was carried out. The apps were then compared for a realistic dynamic scenario of measuring the acceleration response of a bridge due to the passage of a French Train $\grave{a}$ Grande Vitesse (TGV) in a laboratory environment.