• Title/Summary/Keyword: Scattering efficiency

Search Result 303, Processing Time 0.029 seconds

Development of a Cutting Support Cleaning System considering the Dross Adhesion Characteristics (드로스 부착 특성을 고려한 절단 정반 크리닝 시스템 개발)

  • Kim, Ho-Kyeong;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.5919-5924
    • /
    • 2014
  • Accumulated dross adhered to the cutting support degrades the cutting accuracy and aggravates the working environment by reducing the efficiency of the dust collector. Furthermore, the cutting machine and product can be damaged by the scattering of molten metal. In this study, an attempt was made to increase the productivity of steel cutting process and improve the working environment by dross control. The dross adhesion characteristics were invested by a cutting experiment and the design concept for a dross removal machine was devised. Finally, a cutting support cleaning system and its operating algorithm were developed. The applicability of the developed system was examined and verified by a long-term field test after installation of the plasma arc cutting system of a shipyard.

Comparison of characteristics of IZO-Ag-IZO and IZO-Au-IZO multilayer electrodes for organic photovoltaics

  • Jeong, Jin-A;Choi, Kwang-Hyuk;Park, Yong-Seok;Park, Ho-Kyun;Kim, Han-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.131-131
    • /
    • 2010
  • We compared the electrical, optical, structural, and interface properties of indium zinc oxide (IZO)-Ag-IZO and IZO-Au-IZO multilayer electrodes deposited by linear facing target sputtering system at room temperature for organic photovoltaics. The IZO-Ag-IZO and IZO-Au-IZO multilayer electrodes show a significant reduction in their sheet resistance (4.15 and 5.49 Ohm/square) and resistivity ($3.9{\times}10^{-5}$ and $5.5{\times}10^{-5}$Ohm-cm) with increasing thickness of the Ag and Au layers, respectively. In spite of its similar electrical properties, the optical transmittance of the IZO-Ag-IZO electrode is much higher than that of the IZO-Au-IZO electrode, due to the more effective antireflection effect of Ag than Au in the visible region. In addition, the Auger electron spectroscopy depth profile results for the IZO/Ag/IZO and IZO/Au/IZO multilayer electrodes showed no interfacial reaction between the IZO layer and Ag or Au layer, due to the low preparation temperature. To investigate in detail the Ag and Au structures on the bottom IZO electrode with increasing thickness, a synchrotron x-ray scattering examination was employed. Moreover, the OSC fabricated on the IZO-Ag-IZO electrode shows a higher power conversion efficiency (3.05%) than the OSC prepared on the IZO-Au-IZO electrode (2.66%), due to its high optical transmittance in the wavelength range of 400-600 nm, which is the absorption wavelength of the P3HT:PCBM active layer.

  • PDF

Comparison Research of SNR and SRb with Bright Calibration and Multi Frame Images in Digital Radiography of Welded Test Components (용접 시험편의 디지털 방사선 검사에서 밝기 교정과 중첩 영상에 따른 SNR 및 SRb 비교 연구)

  • Nam, Mun-Ho;Yang, Jin-Wook;Cho, Kap-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.731-739
    • /
    • 2021
  • This work compared the bright calibration of digital radiation with signal-to-noise ratio and basic spatial resolution according to multi frame to enable effective inspection of welding parts of structures at industrial sites. A total of 130 images were obtained by using a 75Se radiation source for flat weld test pieces and segmenting bright calibration and multi frame prior to shooting. The study confirms that the signal-to-noise ratio improves as the number of bright calibrations and the number of multi frame increases. The basic spatial resolution satisfied the baseline for both radiographic images. It was confirmed that the number of signal-to-noise ratio was similar by comparing images taken after installing lead shielding for scattering radiation. Although signal-to-noise ratio increases as multi frame increases, it is believed that good quality digital radiographs can be obtained if appropriate radiographic techniques are devised because exposure time of radiation affects workers' exposure and work efficiency.

A cost-effective method to prepare size-controlled nanoscale zero-valent iron for nitrate reduction

  • Ruiz-Torres, Claudio Adrian;Araujo-Martinez, Rene Fernando;Martinez-Castanon, Gabriel Alejandro;Morales-Sanchez, J. Elpidio;Lee, Tae-Jin;Shin, Hyun-Sang;Hwang, Yuhoon;Hurtado-Macias, Abel;Ruiz, Facundo
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.463-473
    • /
    • 2019
  • Nanoscale zero-valent iron (nZVI) has proved to be an effective tool in applied environmental nanotechnology, where the decreased particle diameter provides a drastic change in the properties and efficiency of nanomaterials used in water purification. However, the agglomeration and colloidal instability represent a problematic and a remarkable reduction in nZVI reactivity. In view of that, this study reports a simple and cost-effective new strategy for ultra-small (< 7.5%) distributed functionalized nZVI-EG (1-9 nm), with high colloidal stability and reduction capacity. These were obtained without inert conditions, using a simple, economical synthesis methodology employing two stabilization mechanisms based on the use of non-aqueous solvent (methanol) and ethylene glycol (EG) as a stabilizer. The information from UV-Vis absorption spectroscopy and Fourier transform infrared spectroscopy suggests iron ion coordination by interaction with methanol molecules. Subsequently, after nZVI formation, particle-surface modification occurs by the addition of the EG. Size distribution analysis shows an average diameter of 4.23 nm and the predominance (> 90%) of particles with sizes < 6.10 nm. Evaluation of the stability of functionalized nZVI by sedimentation test and a dynamic light-scattering technique, demonstrated very high colloidal stability. The ultra-small particles displayed a rapid and high nitrate removal capacity from water.

A Study on the Comparison of HPGe Detector Response Data for Low Energy Photons Using MCNP, EGS, and ITS Codes (MCNP, EGS, ITS코드를 이용한 고순도 게르마늄 검출기의 저에너지 광자에 대한 반응 비교연구)

  • Kim, Soon-Young;Kim, Jong-Kyung;Kim, Jong-Oh;Kim, Bong-Hwan
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.2
    • /
    • pp.125-129
    • /
    • 1996
  • The energy response of HPGe detector for low energy Photons was determined by using three Monte Carlo codes. MCNP4A. EGS4, and CYLTRAN in ITS3. In this study. bare HPGe detector$(100 mm^2{\times}10mm)$ was used and a pencil beam was incident perpendicularly on the center of the detector surface. The photopeak efficiency, $K_{\alpha}$ and $K_{\beta}$ escape fractions were calculated as a function of incident X-ray energies ranging from 12 to 60 keV in 2-keV increments. Since the Compton. elastic. ana penetration fraction were negligible in this energy range. they were ignored in the calculation. Although MCNP. EGS, and CYLTRAN codes calculated slightly different energy response of HPGe detector for low energy Photons, it appears that the three Monte Carlo codes can Predict the low energy Photon scattering Processes accurately. The MCNP results, which are generally known as to be less accurate at low energy ranges than the EGS and ITS results. are comparable to the results of EGS and ITS and are applicable to the calculation of the low energy response data of a detector.

  • PDF

Influence of temperature gradient induced by concentrated solar thermal energy on the power generation performance of a thermoelectric module (집중 태양열에 의한 온도구배가 열전발전모듈의 출력 성능에 미치는 영향)

  • Choi, Kyungwho;Ahn, Dahoon;Boo, Joon Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.777-784
    • /
    • 2017
  • Energy harvesting through a thermoelectric module normally makes use of the temperature gradient in the system's operational environment. Therefore, it is difficult to obtain the desired output power when the system is subjected to an environment in which a low temperature gradient is generated across the module, because the power generation efficiency of the thermoelectric device is not optimized. The utilization of solar energy, which is a form of renewable energy abundant in nature, has mostly been limited to photovoltaic solar cells and solar thermal energy generation. However, photovoltaic power generation is capable of utilizing only a narrow wavelength band from the sunlight and, thus, the power generation efficiency might be lowered by light scattering. In the case of solar thermal energy generation, the system usually requires large-scale facilities. In this study, a simple and small size thermoelectric power generation system with a solar concentrator was designed to create a large temperature gradient for enhanced performance. A solar tracking system was used to concentrate the solar thermal energy during the experiments and a liquid circulating chiller was installed to maintain a large temperature gradient in order to avoid heat transfer to the bottom of the thermoelectric module. Then, the setup was tested through a series of experiments and the performance of the system was analyzed for the purpose of evaluating its feasibility and validity.

Fabrication and Photoelectrochemical Properties of a Cu2O/CuO Heterojunction Photoelectrode for Hydrogen Production from Solar Water Splitting (태양광 물 분해를 통한 수소 생산용 Cu2O/CuO 이종접합 광전극의 제작 및 광전기화학적 특성)

  • Kim, Soyoung;Kim, Hyojin;Hong, Soon-Ku;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.604-610
    • /
    • 2016
  • We report on the fabrication and characterization of a novel $Cu_2O/CuO$ heterojunction structure with CuO nanorods embedded in $Cu_2O$ thin film as an efficient photocathode for photoelectrochemical (PEC) solar water splitting. A CuO nanorod array was first prepared on an indium-tin-oxide-coated glass substrate via a seed-mediated hydrothermal synthesis method; then, a $Cu_2O$ thin film was electrodeposited onto the CuO nanorod array to form an oxide semiconductor heterostructure. The crystalline phases and morphologies of the heterojunction materials were examined using X-ray diffraction and scanning electron microscopy, as well as Raman scattering. The PEC properties of the fabricated $Cu_2O/CuO$ heterojunction photocathode were evaluated by photocurrent conversion efficiency measurements under white light illumination. From the observed PEC current density versus voltage (J-V) behavior, the $Cu_2O/CuO$ photocathode was found to exhibit negligible dark current and high photocurrent density, e.g. $-1.05mA/cm^2$ at -0.6 V vs. $Hg/HgCl_2$ in $1mM\;Na_2SO_4$ electrolyte, revealing the effective operation of the oxide heterostructure. The photocurrent conversion efficiency of the $Cu_2O/CuO$ photocathode was estimated to be 1.27% at -0.6 V vs. $Hg/HgCl_2$. Moreover, the PEC current density versus time (J-T) profile measured at -0.5 V vs. $Hg/HgCl_2$ on the $Cu_2O/CuO$ photocathode indicated a 3-fold increase in the photocurrent density compared to that of a simple $Cu_2O$ thin film photocathode. The improved PEC performance was attributed to a certain synergistic effect of the bilayer heterostructure on the light absorption and electron-hole recombination processes.

The effect of crystallinity of hollow $TiO_2$ spheres on conversion efficiency of DSSC (Hollow $TiO_2$의 결정성이 염료감응형 태양전지의 광전 변환 효율에 미치는 영향)

  • Song, Minkyeong;Kim, Jeonghyun;Yu, Yeontae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.50.2-50.2
    • /
    • 2011
  • 염료감응형 태양전지는 기존의 실리콘 태양전지에 비해 저렴한 가격과 다양한 날씨 조건에서도 태양광과의 반응성이 안정하다는 여러 가지 장점을 갖고 있다. 하지만 광전 변환 효율이 기존의 실리콘 태양전지에 비해 현저히 떨어진다는 문제점과 장기적으로 안정하지 못하다는 단점을 가지고 있다. 이러한, 염료감응형 태양전지에서 크게 광전 변환 효율을 향상시킬 수 있는 재료는 염료, $TiO_2$와 같은 반도체 산화물전극 재료, 전해질이다. 이 중 $TiO_2$의 특성 및 크기는 염료감응형 태양전지의 효율에 영향을 미친다. 염료감응형 태양전지의 광전 변환 효율을 증가시키기 위해서 $TiO_2$는 넓은 비표면적, 높은 전자의 이동성 및 태양광과의 우수한 반응성을 가져야 한다. Microwave hydrothermal 방법에 의해 제조된 hollow $TiO_2$를 염료감응형 태양전지에 적용시킬 경우 기존의 $TiO_2$의 광흡수 반응이 200~400 nm 사이에서 발생하는 반면, hollow $TiO_2$의 광흡수 반응은 기존의 UV 영역인 200~400 nm 뿐만 아니라 가시광 영역인 400~460 nm 에서도 광흡수 반응이 가능하기 때문에 염료감응형 태양전지에서 광전 변환효율을 증가 시킬 수 있을 것으로 기대된다. 또한, microwave hydrothermal법에 의해 제조된 hollow $TiO_2$는 150-200 nm의 크기를 갖으며 20-30 nm 크기의 $TiO_2$ particle들로 이루어져 있다. hollow $TiO_2$ (150-200 nm)를 기존의 $TiO_2$ (10-20 nm) 층 위에 올려 염료감응형 태양전지의 electrode에 적용할 경우 기존의 $TiO_2$ 단층을 이용한 것보다 우수한 light-scattering 효과를 갖게 되어 광전 변환 효율 증가에 긍정적인 영향을 미칠 것이다. 본 연구에서는 hollow $TiO_2$의 광학적 특성 및 결정성이 염료감응형 태양전지에 미치는 영향을 조사하였다. hollow $TiO_2$의 광학적 특성 및 결정성의 변화를 위하여 microwave hydrothermal 법의 합성 온도 및 합성시간에 변화를 주었다. hollow $TiO_2$의 광학적 특성은 UV-visible spectrometer를 이용하여 조사하였으며, hollow $TiO_2$의 형상과 결정학적 특성은 TEM과 SEM 그리고 X선 회절 분석을 이용하여 관찰되었고, hollow $TiO_2$의 비표면적 측정은 BET 측정법을 이용하였다. 또한 염료감응형 태양전지 cell을 제작하여 $100mW/cm^2$(AM 1.5G) 기준에서 광전 변환 효율을 측정하였다.

  • PDF

Enhanced Transdermal Delivery of Drug Compounds Using Scalable and Deformable Ethosomes (에토좀 입자크기와 멤브레인 특성 조절을 통한 약물의 경피흡수능 향상)

  • An, Eun-Jung;Shim, Jong-Won;Choi, Jang-Won;Kim, Jin-Woong;Park, Won-Seok;Kim, Han-Kon;Park, Ki-Dong;Han, Sung-Sik
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.2
    • /
    • pp.105-113
    • /
    • 2010
  • This study introduces a flexible approach to enhance skin permeation by using ethosomes with deformable lipid membranes as well as controllable sizes. To demonstrate this, a set of ethosomes encapsulating an anti-hair loss ingredient, Triaminodil$^{TM}$, as a model drug, were fabricated with varying their size, which was achieved by solely applying the different level of mechanical energy, while maintaining their chemical composition. After characterization of the ethosomes with dynamic light scattering, transmission electron microscopy, and deformability measurements, it was found that their membrane deformability depended on the particle size. Moreover, studies on in vitro skin permeation and murine anagen induction allowed us to figure out that the membrane deformability of ethosomes essentially affects delivery efficiency of Triaminodil$^{TM}$ through the skin. It was noticeable in our study that there existed an optimum particle size that can not only maximize the delivery of the drug through the skin, but also increase its actual dermatological activity. These findings offer a useful basis for understanding how ethosomes should be designed to improve delivery efficiency of encapsulated drugs therein in the aspects of changing their length scales and membrane properties.

A Status Analysis for the Standards on Permission of Altering Cultural Heritage's Current State Focusing on the Results of Handling Application Cases on Permission of State-Designated Cultural Heritage (Historic Site) for the Last Five Years (2015~2019) (문화재 현상변경 인·허가 검토기준 마련을 위한 실태분석 연구 - 최근 5년(2015~2019)간 국가지정문화재(사적)의 허가신청 안건 처리결과를 중심으로 -)

  • CHO, Hongseok;SUH, Hyunjung;CHOI, Jisu
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.3
    • /
    • pp.24-51
    • /
    • 2021
  • Since June 2006, there have been active efforts to systematize the permission system including the amendment of [Cultural Heritage Protection Act]. Cultural Heritage Administration prepared standards on reviewing each type of cultural heritages(CH) in 2015, promoted a project on the modification of permission standards and showed remarkable performances in quantitative aspects. But as there has been little change for the cases applied for permission, additional studies on policy are required to improve the management efficiency and reduce the citizens'inconvenience. In response, this study aims to identify the actual management status on the current state alteration permission system, and establish practically utilizable reference materials at permission review. While historic sites(HS) constitute a relatively small proportion in state-designated CHs, they are subject to the designation of permission standards. Also, with their location in the downtown area, the application rate is high (51.4%) and the results are commonly utilizable to other types of CH. We constructed a DB based on the minutes of Cultural Heritage Committee(CHC) on HS and categorized similar features in permission handling results. The result of the analysis is as follows. Out of a total of 5,243 cases for permission applied for HS, 1,734 cases of cultural heritage areas(CHA) and 3,509 cases of historic and cultural environment preservation areas(HCEPA) have been applied. CHA has a great proportion of the applications for events and festivals, which are highly related to CHs or representing the local area. There is a high permission rate on applications for the purpose of public service by local governments. Meanwhile, HCEPA has a high proportion of applying for the installation and extension of buildings and facilities at the private level. Thus, negative decisions were made for tall buildings, massed facilities, or suspected scattering of similar acts. Our actual condition analysis has identified a total of 78 types of harmful acts which may influence the preservation of CHs. 31 types in CHA and 37 types in HCEPA are categorized. Especially, 10 common types of permission have been confirmed in both sectors. As a result, it is expected to secure consistency in the permission administration, enhance the management efficiency and improve the public's satisfaction over the regulatory administration by providing practically utilizable reference materials for altering the current state of CH and for decision making on the part of CHC.