DOI QR코드

DOI QR Code

Fabrication and Photoelectrochemical Properties of a Cu2O/CuO Heterojunction Photoelectrode for Hydrogen Production from Solar Water Splitting

태양광 물 분해를 통한 수소 생산용 Cu2O/CuO 이종접합 광전극의 제작 및 광전기화학적 특성

  • Kim, Soyoung (Graduate School of Advanced Circuit Substrate Engineering, Chungnam National University) ;
  • Kim, Hyojin (Department of Materials Science and Engineering, Chungnam National University) ;
  • Hong, Soon-Ku (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Dojin (Department of Materials Science and Engineering, Chungnam National University)
  • 김소영 (충남대학교 차세대기판학과) ;
  • 김효진 (충남대학교 공과대학 신소재공학과) ;
  • 홍순구 (충남대학교 공과대학 신소재공학과) ;
  • 김도진 (충남대학교 공과대학 신소재공학과)
  • Received : 2016.08.23
  • Accepted : 2016.09.29
  • Published : 2016.11.27

Abstract

We report on the fabrication and characterization of a novel $Cu_2O/CuO$ heterojunction structure with CuO nanorods embedded in $Cu_2O$ thin film as an efficient photocathode for photoelectrochemical (PEC) solar water splitting. A CuO nanorod array was first prepared on an indium-tin-oxide-coated glass substrate via a seed-mediated hydrothermal synthesis method; then, a $Cu_2O$ thin film was electrodeposited onto the CuO nanorod array to form an oxide semiconductor heterostructure. The crystalline phases and morphologies of the heterojunction materials were examined using X-ray diffraction and scanning electron microscopy, as well as Raman scattering. The PEC properties of the fabricated $Cu_2O/CuO$ heterojunction photocathode were evaluated by photocurrent conversion efficiency measurements under white light illumination. From the observed PEC current density versus voltage (J-V) behavior, the $Cu_2O/CuO$ photocathode was found to exhibit negligible dark current and high photocurrent density, e.g. $-1.05mA/cm^2$ at -0.6 V vs. $Hg/HgCl_2$ in $1mM\;Na_2SO_4$ electrolyte, revealing the effective operation of the oxide heterostructure. The photocurrent conversion efficiency of the $Cu_2O/CuO$ photocathode was estimated to be 1.27% at -0.6 V vs. $Hg/HgCl_2$. Moreover, the PEC current density versus time (J-T) profile measured at -0.5 V vs. $Hg/HgCl_2$ on the $Cu_2O/CuO$ photocathode indicated a 3-fold increase in the photocurrent density compared to that of a simple $Cu_2O$ thin film photocathode. The improved PEC performance was attributed to a certain synergistic effect of the bilayer heterostructure on the light absorption and electron-hole recombination processes.

Keywords

References

  1. C.-J. Winter, Int. J. Hydrogen Energy, 34, S1 (2009). https://doi.org/10.1016/j.ijhydene.2009.05.063
  2. K. Rajeshwar, J. Appl. Electrochem., 37, 765 (2007). https://doi.org/10.1007/s10800-007-9333-1
  3. S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z.-X. Guo and J. Tang, Energy Environ. Sci., 8, 731 (2015). https://doi.org/10.1039/C4EE03271C
  4. A. Fujishima and K. Honda, Nature, 238, 37 (1972). https://doi.org/10.1038/238037a0
  5. M. Gratzel, Nature, 414, 338 (2001). https://doi.org/10.1038/35104607
  6. A. Paracchino, V. Laporte, K. Sivula, M. Gratzel and E. Thimsen, Nat. Mater., 10, 456 (2011). https://doi.org/10.1038/nmat3017
  7. S-M. Ho-Kimura, S. J. A. Moniz, J. Tang and I. P. Parkin, ACS Sustainable Chem. Eng., 3, 710 (2015). https://doi.org/10.1021/acssuschemeng.5b00014
  8. Z. Zhang and P. Wang, J. Mater. Chem., 22, 2456 (2012). https://doi.org/10.1039/C1JM14478B
  9. S. J. A. Moniz, S. A. Shevin, D. J. Martin, Z-X. Guo and J. Tang, Energy Environ. Sci., 8, 731 (2015). https://doi.org/10.1039/C4EE03271C
  10. D. Wang, X. Zhang, P. Sun, S. Lu, L. Wang, C. Wang and Y. Liu, Electrochim. Acta, 130, 290 (2014). https://doi.org/10.1016/j.electacta.2014.03.024
  11. S-J. Park, H. Kim and D. Kim, Korean J. Mater. Res., 24, 19 (2014). https://doi.org/10.3740/MRSK.2014.24.1.19
  12. Z. Kang, X. Yan, Y. Wang, Z. Bai, Y. Liu, Z. Zhnag, P. Lin, X. Zhang, H. Yuan, X. Zhang and Y. Zhang, Sci. Rep., 5, 7882 (2015). https://doi.org/10.1038/srep07882
  13. P. E. de Jongh, D. Vanmaekelbergh and J. J. Kelly, Chem. Mater., 11, 3512 (1999). https://doi.org/10.1021/cm991054e
  14. A. Paracchino, J. C. Brauer, J-E. Moser, E. Thimsen and M. Graetzel, J. Phys. Chem. C, 116, 7341 (2012). https://doi.org/10.1021/jp301176y
  15. P. Y. Yu, Y. R. Shen and Y. Petroff, Solid State Commun., 12, 973 (1973). https://doi.org/10.1016/0038-1098(73)90018-5
  16. P. Y. Yu and Y. R. Shen, Phys. Rev. B, 12, 1377 (1975). https://doi.org/10.1103/PhysRevB.12.1377
  17. H. F. Goldstein, D-s. Kim, P. Y. Yu, L. C. Bourne, J-P. Chaminade and L. Nganga, Phys. Rev. B, 41, 7192 (1990). https://doi.org/10.1103/PhysRevB.41.7192
  18. Z. Chen, H. N. Dinh and E. Miller, Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols, Springer, New York (2013), p. 10.