• 제목/요약/키워드: Scattering Coefficient

검색결과 317건 처리시간 0.023초

음향을 이용한 동해 남서부해역에서 어류와 동물플랑크톤의 관계 (The relationship between fish and zooplankton in south-western region of the East Sea using hydroacoustics)

  • 한인성;오우석;윤은아;서영상;이경훈;신형호
    • 수산해양기술연구
    • /
    • 제53권4호
    • /
    • pp.376-385
    • /
    • 2017
  • This study was conducted to understand the relationships between fish and zooplankton of distribution in the coastal waters of the East Sea from May to August 2016 using hydroacoustic. To distinguish between fish and zooplankton, we used the time varied threshold (TVT) method at the frequency of 120 kHz. As a result, the mean nautical area scattering coefficient (NASC) of fish was highest at $913m^2/n.mile^2$ in June and lowest at $315m^2/n.mile^2$ in July. The mean NASC of zooplankton was highest at $247m^2/n.mile^2$ in May and lowest at $70m^2/n.mile^2$ in July. The mean NASC of fish and zooplankton showed a significant difference (P < 0.05) with high correlation ($R^2=0.84$). In addition, there was no significant difference in the mean NASC of fishes and zooplankton by depth (t-test, person correction = -0.17, p > 0.05).

탄성칼슘에 성상이 종이물성에 미치는 영향 (Effect of Particle Shape and Size of Calcium Carbonate on Physical Properties of Paper)

  • 한영림;서영범
    • 펄프종이기술
    • /
    • 제29권1호
    • /
    • pp.7-12
    • /
    • 1997
  • This study was intended to investigate the proper shape and size of calcium carbonate for the improvement of paper properties and its end use performance. We loaded calcium carbonate of various shapes and size in the handsheet and measured their physical and optical properties. Results obtained from the study are summarized as follows : 1. Due to different particle shapes and sizes, precipitated calcium carbonate (PCC) contributed greater to bulk improvement than ground calcium carbonate (GCC). Scalenohedral form of PCC produced the bulkiest sheet, GCC made the sheet bulkier as average particle size increases. 2. Tensile strength increased as average particle size was increasing. GCC kept tensile strength more effectively than PCC. The effect of particle size on tensile strength was much more pronounced as filler addition level was increasing. 3. Over the average particle size of 6.99$\mu$m, GCC gave much higher burst strength and internal bond than PCC did. In the filler levels of 20% and 30%, GCC by using bigger size fillers showed 50~100% improvement in some cases than PCC at the same filler content. 4. Tear strength increased as average particle size was increasing. At the filler level of 30%, PCC decreased tear greatly. 5. Over the average particle size of 13.56$\mu$m, GCC kept bending stiffness greater than PCC. Due to its shape, Scalenohedral form of PCC showed higher stiffness than others at the same particle size. 6. Cubic and acicular form of PCC improved light scattering coefficient very effectively. Light scattering coefficient of GCC decreased as average particle size increased. 7. Both of particle shape and size of filler were important factor in developing optical properties and bending stiffness. Particle size was the only important factor in developing other strength properties

  • PDF

비선형 상호작용에 의한 풍파 성분간 에너지 전달의 계산 (Computation of Nonlinear Energy Transfer among Wind Seas)

  • 오병철;이길성
    • 한국해안해양공학회지
    • /
    • 제11권1호
    • /
    • pp.7-19
    • /
    • 1999
  • 비선형 상호작용에 의한 풍파 성분간 에너지 전달은 스펙트럼의 발달에서 중요한 역할을 한다. 비선형 전달을 표현하는 Boltzmann적분을 계산하는 데에는 방대한 계산시간이 필요하기 때문에 파랑모형에서 비선형 상호작용을 고려하는 것을 불가능하다. 본 연구에서는 산란계수의 특성과 상호작용의 상세균형의 원리를 이용하여 비선형 전달을 효율적으로 계산하는 방법에 대하여 고찰하였다. Webb의 방법(IWm)은 특이점을 퇴화시켜 매우 안정한 계산 결과를 주지만 상세균형의 원리를 적용할 수 없기 때문에 계산의 효율성에는 한계가 있는 것으로 나타났다. 한편, Masuda의 방법(IMM)에서는 특이점을 해석적으로 처리하며 계산시간은 Pentinum 300MHz Processor에서 1.3초가 소요되었다. 따라서 IMM은 1차원 파랑모형에 실용적으로 사용할 수 있으며 취송시간과 취송거리에 의한 풍파 스펙트럼의 성장 과정 연구등에 매우 유용하다.

  • PDF

사각형 노치에 대한 램파의 다중 모드 반사와 투과 계수 해석 (Analysis of Multi-Mode Reflection and Transmission Coefficients of a Lamb Wave Across a Rectangular Notch)

  • 김병수;노용래
    • 한국음향학회지
    • /
    • 제27권3호
    • /
    • pp.129-139
    • /
    • 2008
  • 본 논문의 목적은 탄성판 내에서 진행하는 기본형 램파 모드인 $S_0,\;A_0$ 모드가 사각형 노치에 의해 산란되었을 때, 노치의 2차원 형상에 따른 각 파의 반사계수와 투과계수를 구하는데 있다. 먼저 노치가 있는 부분의 평판의 두께 변화에 따라 노치 부위에 발생 가능한 램파모드의 변화를 고찰하고, 노치 부위의 경계면 형상과 노치 내부에서 진행하는 입사파의 방향에 따라, 노치에 의한 전체 산란 현상을 3가지의 독립된 산란 프로세스로 구분하였다. 그리고 각 프로세스의 경계면에 자유 경계조건과 연속조건을 적용하여 각 프로세스에서 발생된 산란파의 투과 및 반사 계수를 구하였다. 나아가 중첩의 원리를 이용하여 각 프로세스의 산란파를 모드별로 합산하고, 사각형 노치의 폭과 깊이의 변화에 따른 입력파의 에너지 플럭스의 합과 반사 및 투과파의 에너지 플럭스의 합의 차이가 최대 4%에 들도록 하는 정상상태에서의 반사 및 투과계수를 구하고 분석하였다.

식물층에서의 편파별 후방 산란 측정과 산란 모델의 비교 (Comparison between Measurements and Scattering Model for Polarimetric Backscattering from Vegetation Canopies)

  • 홍진영;오이석
    • 한국전자파학회논문지
    • /
    • 제17권9호
    • /
    • pp.804-810
    • /
    • 2006
  • 본 논문은 후방 산란 계수 및 지표면 특성(ground truth)에 대한 측정 방법을 기술하며 후방 산란 계수 측정값과 radiative transfer 이론을 적용하여 개발된 산란 모델을 비교함으로써 산란 모델의 정확성을 검증한다. R 밴드 $(1.7\sim2.0GHz)$의 주파수 대역에서 polarimetric scatterometer 시스템으로 한강생태공원의 수풀 지형에서의 후방 산란 계수를 입사 각도의 변화와 지표면 수분 함유량의 변화에 따라 측정한다. 이 측정 결과를 지표 산란 모델과 비교한 결과 동일 편파의 경우 비교적 잘 일치하며 교차 편파의 경우 보정을 해줌으로써 산란 모델의 정확성을 얻을 수 있다.

CF4 기체에서의 전리와 부착계수 (Ionization and Attachment Coefficients in CF4)

  • 김상남
    • 전기학회논문지P
    • /
    • 제60권1호
    • /
    • pp.27-31
    • /
    • 2011
  • In this paper, the electron transport characteristics in $CF_4$ has been analysed over the E/N range 1~300[Td] by a two-term approximation Boltzmann equation method and by a Monte Carlo simulation. The motion has been calculated to give swarm parameters for the electron drift velocity, longitudinal diffusion coefficient, the ratio of the diffusion coefficient to the mobility, electron ionization and attachment coefficients, effective ionization coefficient, mean energy, collision frequency and the electron energy distribution function. The electron energy distribution function has been analysed in $CF_4$ at E/N=5, 10, 100, 200 and 300[Td] for a case of the equilibrium region in the mean electron energy and respective set of electron collision cross sections. The results of Boltzmann equation and Monte Carlo simulation have been compared with experimental data by Y. Nakamura and M. Hayashi. The swarm parameter from the swarm study are expected to serve as a critical test of current theories of low energy electron scattering by atoms and molecules, in particular, as well as crucial information for quantitative simulations of weakly ionized plasmas.

석영 라만 채널을 이용한 황사 후방 산란 계수 산출 (Retrieval of Dust Backscatter Coefficient using Quartz Raman Channel in Lidar Measurements)

  • 노영민;;이한림
    • 한국대기환경학회지
    • /
    • 제28권1호
    • /
    • pp.86-93
    • /
    • 2012
  • We present a retrieval method to obtain dust backscatter coefficient from the mixed Asian dust and pollutant layer. In the present study, vertically resolved quartz (silicon dioxide, silica) concentration was calculated using Raman scattering signals from quartz at 546 nm. Dust concentration was obtained based on typical mass percentage of quartz in Asian dust. The highest value of dust concentration at 3.7 km in March 21, 2010 was 22.3 and 10.9 ${\mu}gm^{-3}$ according to the quartz percentage in Asian dust as 65 and 30% based on literature survey, respectively. OPAC (Optical Properties of Aerosol and Clouds) simulations were conducted to calculate dust backscatter coefficient. The retrieved dust concentration was used as an input parameter for the OPAC calculations. Utilization of quartz Raman channel in Lidar measurements is considered useful for distinguishing optical properties of dust and nondust aerosol in the mixing state of Asian dust.

ErAs 나노입자가 첨가된 InGaAlAs 박막의 평면정렬방향으로의 열전특성 (In-Plane Thermoelectric Properties of InGaAlAs Thin Film with Embedded ErAs Nanoparticles)

  • 이영중
    • 한국재료학회지
    • /
    • 제21권8호
    • /
    • pp.456-460
    • /
    • 2011
  • Microelectromechanical systems (MEMS)-fabricated suspended devices were used to measure the in-plane electrical conductivity, Seebeck coefficient, and thermal conductivity of 304 nm and 516 nm thick InGaAlAs films with 0.3% ErAs nanoparticle inclusions by volume. The suspended device allows comprehensive thermoelectric property measurements from a single thin film or nanowire sample. Both thin film samples have identical material compositions and the sole difference is in the sample thickness. The measured Seebeck coefficient, electrical conductivity, and thermal conductivity were all larger in magnitude for the thicker sample. While the relative change in values was dependent on the temperature, the thermal conductivity demonstrated the largest decrease for the thinner sample in the measurement temperature range of 325 K to 425 K. This could be a result of the increased phonon scattering due to the surface defects and included ErAs nanoparticles. Similar to the results from other material systems, the combination of the measured data resulted in higher values of the thermoelectric figure of merit (ZT) for the thinner sample; this result supports the theory that the reduced dimensionality, such as in twodimensional thin films or one-dimensional nanowires, can enhance the thermoelectric figure of merit compared with bulk threedimensional materials. The results strengthen and provide a possible direction in locating and optimizing thermoelectric materials for energy applications.

다공성 흑연의 기공내부로 침투하는 Si 증발입자의 확산 (Diffusion of Si Vapor Infiltrating into Porous Graphite)

  • 박장식;황정태
    • 한국표면공학회지
    • /
    • 제49권1호
    • /
    • pp.104-109
    • /
    • 2016
  • Graphite's thermal stability facilitates its widespread use as crucibles and molds in high temperatures processes. However, carbon atoms can be rather easily detached from pores and outer surfaces of the graphite due to the weak molecular force of the c axis of graphites. Detached carbon atoms are known to become a source of dust during fabrication processes, eventually lowering the effective yield of products. As an effort to reduce these problems of dust scattering, we have fabricated SiC composites by employing Si vapor infiltration method into the pores of graphites. In order to understand the diffusion process of the Si vapor infiltration, Si and C atomic percentages of fabricated SiC composites are carefully measured and the diffusion law is used to estimate the diffusion coefficient of Si vapor. A quadratic equation is obtained from the experimental results using the least square method. Diffusion coefficient of Si vapor is estimated using this quadratic equation. The result shows that the diffusion length obtained through the Si vapor infiltration method is about 10.7 times longer than that obtained using liquid Si and clearly demonstrates the usefulness of the present method.

873~1,273 K에서 열화된 강화흑연강(Compacted Graphite Iron, CGI)의 초음파특성 (Ultrasonic Characteristics of Degraded Compacted Graphite Iron from 873 to 1,273 K)

  • 이수철;남기우
    • 동력기계공학회지
    • /
    • 제17권4호
    • /
    • pp.72-78
    • /
    • 2013
  • Compacted graphite iron 340 was carried out the heat treatment from 873 to 1,273 K. Compacted graphite iron 340 was evaluated relationship between the sound velocity, the attenuation coefficient and the tensile strength. The obtained results are as following. The signal strength of C scan images were weak according to increasing of heat treatment temperature and time. The amplitude of A scan and B scan was also low. This can be cause that the graphite was grown into the type of vermicular, and the many of grain boundary with ultrasound scattering were increase. The sound velocity was depend upon the heat treatment temperature and time, the attenuation coefficient had nothing to do with the temperature and time. The higher the heat treatment temperature, the tensile strength and the sound velocity were decreased. However, the tensile strength was proportional to the sound velocity. The higher tensile strength, the faster the sound velocity.