• Title/Summary/Keyword: Scattering Center

Search Result 543, Processing Time 0.03 seconds

Gamma spectrum denoising method based on improved wavelet threshold

  • Xie, Bo;Xiong, Zhangqiang;Wang, Zhijian;Zhang, Lijiao;Zhang, Dazhou;Li, Fusheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1771-1776
    • /
    • 2020
  • Adverse effects in the measured gamma spectrum caused by radioactive statistical fluctuations, gamma ray scattering, and electronic noise can be reduced by energy spectrum denoising. Wavelet threshold denoising can be used to perform multi-scale and multi-resolution analysis on noisy signals with small root mean square errors and high signal-to-noise ratios. However, in traditional wavelet threshold denoising methods, there are signal oscillations in hard threshold denoising and constant deviations in soft threshold denoising. An improved wavelet threshold calculation method and threshold processing function are proposed in this paper. The improved threshold calculation method takes into account the influence of the number of wavelet decomposition layers and reduces the deviation caused by the inaccuracy of the threshold. The improved threshold processing function can be continuously guided, which solves the discontinuity of the traditional hard threshold function, avoids the constant deviation caused by the traditional soft threshold method. The examples show that the proposed method can accurately denoise and preserves the characteristic signals well in the gamma energy spectrum.

Change of Dispersibility and Refractive Index of Zirconia Suspension Depending on Alkali Treatment Time (염기처리시간에 따른 지르코니아 현탁액의 분산성과 굴절율 변화)

  • Jo, Choong Hee;Ham, Dong Seok;Lee, Jae Heung;Ryu, Juwhan;Lee, Kee-Yoon;Cho, Seong Keun
    • Korean Journal of Materials Research
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Zirconia nanoparticles were widely used as filler in order to get high refractive index layer. However, dispersion of nanoparticles is difficult due to their agglomeration in solvent. In this study, the dispersibility of the zirconia suspension is promoted by controlling the steric hindrance and electrostatic interactions through the adsorption of PEI according to alkali treatment time. Also, to induce improved dispersibility on suspension, we changed the dispersion conditions variously and fabricated an ink formulation method for the coating layer. Zirconia suspension was characterized by dynamic light scattering (DLS), Zeta potential measurement, Transmission Electron Microscope (TEM) and FT-IR. We were able to confirm that good dispersion of zirconia suspension by alkali treatment and PEI led to high refractive index.

Fabrication and Performance Analysis of Environment Friendly Double Core Bullets for Small Arms (2중 코어 구조의 소화기용 친환경 탄자 제조 및 특성 분석)

  • Hong, Jun-Hee;Jang, Tak-Soon;Song, Chang-Bin;Kang, Dae-Wha
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.345-352
    • /
    • 2011
  • This paper focuses on the properties analysis of 9mm bullet dual structure core to substitute current lead core by environment-friendly combination of W-Cu-Ni system high density composite materials. So the four combination samples were made of dual core with the different center of gravity location backward or forward compare to that of lead type bullet, and we experimented about the performance of 9mm bullet dual structure core. In the experimental results, the outer shape of core of four environment friendly samples on the target maintain marginally, while the current lead core bullets are completely crushed after hitting the target. The penetration depth of environment friendly samples excel seven times to lead type bullet and the three out of four samples with forward adjusted center of gravity penetrate deep as twice as ones backward. The impact tolerance of all four samples satisfies military specification, however, more firing tests are required to improve reliability of scattering distribution.

Chemical Lithography by Surface-Induced Photoreaction of Nitro Compounds

  • Han, Sang-Woo;Lee, In-Hyung;Kim, Kwan
    • ETRI Journal
    • /
    • v.26 no.1
    • /
    • pp.38-44
    • /
    • 2004
  • Searching for systems of self-assembled monolayers (SAMs) that can be used as templates for chemical lithography, we found that nitro groups on aromatic SAMs are selectively converted on Ag to amino groups by irradiation with a visible laser. 4-nitrobenzenethiol on Ag was thus converted to 4-aminobenzenethiol by irradiating it with an $Ar^+$ laser. This was evident from surface-enhanced Raman scattering (SERS) as well as from a coupling reaction forming amide bonds. The surface-induced photoreaction allowed us to prepare patterned binary monolayers on Ag that showed different chemical reactivities. Using the binary monolayers as a lithographic template, we induced site-specific chemical reactions, such as the selective growth of biominerals on either the nitro- or amine-terminated regions by adjusting the crystal-growth conditions. We also demonstrated that patterned, amine-terminated monolayers can be fabricated even on gold by using silver nanoparticles as photoreducing catalysts.

  • PDF

Coating Property of Hybrid Structured Photo-Electrode to Increase Dye-Sensitized Solar Cells Efficiency (염료감응형 태양전지의 효율 향상을 위한 하이브리드 구조 광전극의 코팅특성)

  • Kim, Min-Hee;Lee, Hyung-Woo;Jeong, Young-Keun
    • Journal of Powder Materials
    • /
    • v.17 no.6
    • /
    • pp.449-455
    • /
    • 2010
  • The hybrid structured photo-electrode for dye-sensitized solar cells was fabricated based on the composites of $TiO_2$ nanoparticles and nanowires. Three samples with different hybrid structures were prepared with 17 vol%, 43 vol%, and 100 vol% nanowires. The energy conversion efficiency was enhanced from 5.54% for pure nanoparticle cells to 6.01% for the hybrid structure with 17 vol% nanowires. For the hybrid structured layers with high nanowires concentration (43 vol% and 100 vol%), the efficiency decreased with the nanowire concentration, because of the decrease of specific surface area, and of thus decreased current density. The random orientations of $TiO_2$ nanowires can be preserved by the doctor blade process, resulted in the enhanced efficiency. The hybrid structured $TiO_2$ layer can possess the advantages of the high surface area of nanoparticles and the rapid electron transport rate and the light scattering effect of nanowires.

STUDY ON THE IMPROVEMENT OF LIGHT TRAPPING IN THE SILICON-BASED THIN-FILM SOLAR CELLS (실리콘 박막 태양전지에서 광 포획(light trapping) 개선에 관한 연구)

  • Jeon Sang Won;Lee Jeong Chul;Ahn Sae Jin;Yun Jae Ho;Kim Seok Ki;Park Byung Ok;Song Jinsoo;Yoon Kyung Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.192-195
    • /
    • 2005
  • The silicon thin film solar cells were fabricated by 13.56 MHz PECVD (Plasma-Enhanced Chemical-Vapor Deposition) and 60 MHz VHF PECVD (Very High-Frequency Plasma-Enhanced Chemical-Vapor Deposition). We focus on textured ZnO:Al films prepared by RF sputtering and post deposition wet chemical etching and studied the surface morphology and optical properties. These films were optimized the light scattering properties of the textured ZnO:Al after wet chemical etching. Finally, the textured ZnO:Al films were successfully applied as substrates for silicon thin films solar cells. The efficiency of tandem solar cells with $0.25 cm^2$ area was $11.8\%$ under $100mW/cm^2$ light intensity. The electrical properties of tandem solar cells were measured with solar simulator (AM 1.5, $100 mW/cm^2)$ and spectral response measurements.

  • PDF

Ultrahigh Vacuum Technologies Developed for a Large Aluminum Accelerator Vacuum System

  • Hsiung, G.Y.;Chang, C.C.;Yang, Y.C.;Chang, C.H.;Hsueh, H.P.;Hsu, S.N.;Chen, J.R.
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.309-316
    • /
    • 2014
  • A large particle accelerator requires an ultrahigh vacuum (UHV) system of average pressure under $1{\times}10^{-7}$ Pa for mitigating the impact of beam scattering from the residual gas molecules. The surface inside the beam ducts should be controlled with an extremely low thermal outgassing rate under $1{\times}10^{-9}Pa{\cdot}m^3/(s{\cdot}m^2)$ for the sake of the insufficient pumping speed. To fulfil the requirements, the aluminum alloys were adopted as the materials of the beam ducts for large accelerator that thanks to the good features of higher thermal conductivity, non-radioactivity, non-magnetism, precise machining capability, et al. To put the aluminum into the large accelerator vacuum systems, several key technologies have been developed will be introduced. The concepts contain the precise computer numerical control (CNC) machining process for the large aluminum ducts and parts in pure alcohol and in an oil-free environment, surface cleaning with ozonized water, stringent welding process control manually or automatically to form a large sector of aluminum ducts, ex-situ baking process to reach UHV and sealed for transportation and installation, UHV pumping with the sputtering ion pumps and the non-evaporable getters (NEG), et al. The developed UHV technologies have been applied to the 3 GeV Taiwan Photon Source (TPS) and revealed good results as the expectation. The problems of leakage encountered during the assembling were most associated with the vacuum baking which result in the consequent trouble shootings and more times of baking. Then the installation of the well-sealed UHV systems is recommended.

Extraction of Effective Carrier Velocity and Observation of Velocity Overshoot in Sub-40 nm MOSFETs

  • Kim, Jun-Soo;Lee, Jae-Hong;Yun, Yeo-Nam;Park, Byung-Gook;Lee, Jong-Duk;Shin, Hyung-Cheol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.2
    • /
    • pp.115-120
    • /
    • 2008
  • Carrier velocity in the MOSFET channel is the main driving force for improved transistor performance with scaling. We report measurements of the drift velocity of electrons and holes in silicon inversion layers. A technique for extracting effective carrier velocity which is a more accurate extraction method based on the actual inversion charge measurement is used. This method gives more accurate result over the whole range of $V_{ds}$, because it does not assume a linear approximation to obtain the inversion charge and it does not limit the range of applicable $V_{ds}$. For a very short channel length device, the electron velocity overshoot is observed at room temperature in 37 nm MOSFETs while no hole velocity overshoot is observed down to 36 nm. The electron velocity of short channel device was found to be strongly dependent on the longitudinal field.

Characteristics of composite membranes containing ionic liquid and acid for anhydrous high temperature PEFCs (무가습 고온 PEFC용 이온성 액체 및 산이 함유된 복합막의 특성)

  • Baek, Ji-Suk;Park, Jin-Soo;Park, Seung-Hee;Yang, Tae-Hyun;Park, Gu-Gon;Yim, Sung-Dae;Kim, Chang-Soo;Shul, Young-Gun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.378-378
    • /
    • 2009
  • The ionic liquid-based sulfonated hydrocarbon composite membranes was prepared for use in anhydrous high temperature-polymer electrolyte fuel cells (HT-PEFCs). Ionic liquid behaves like water in the composite membranes under anhydrous condition. However the composite membranes show a low conductivity and high gas permeability as the content of ionic liquid increases due to its high viscosity and content of ionic liquid, respectively. Hence, in order to enhance the proton conductivity and to reduce the gas permeability of the composite membranes with low content of ionic liquids, the acid containing a common ion of ionic liquid was added to the composite membranes. The characterization of composite membranes was carried out using small-angle X-ray scattering (SAXS), thermogravimetric analyzer (TGA) and impedance spectroscopy. As a result, the composite membranes containing acid showed higher proton conductivity than those with no acid under the un-humidified condition due to a decrease in viscosity. In addition, the proton conductivity of composite membranes increased with increasing mole concentration of acid.

  • PDF

Synthesis of Chiral Poly(norbornene carboxylic acid ester)s and Their Characteristic Properties in The Thin Film

  • Byun, Gwang-Su;Lee, Taek-Joon;Jin, Kyeong-Sik;Ree, Moon-Hor;Kim, Sang-Youl;Cho, I-Whan
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.333-333
    • /
    • 2006
  • We synthesized two novel polynorbornene derivatives, chiral poly(norbornene acid methyl ester) (C-PNME) and racemic poly(norbornene acid n-butyl ester) (R-PNME), which are potential low dielectric constant materials for applications in advanced microelectronic and display devices. Thin films of these polymers deposited on substrates were investigated by structural analyses using synchrotron grazing incidence X-ray scattering, specular reflectivity and ellipsometry. These analyses provided important information on the structure, electron density gradient across film thickness, chain orientation, refractive index and thermal expansion of the polymers in substrate-supported thin films. The structural characteristics and properties of the thin films were first dependent on the polymer chain' tacticity and further influenced by film thickness and thermal annealing.

  • PDF