DOI QR코드

DOI QR Code

Change of Dispersibility and Refractive Index of Zirconia Suspension Depending on Alkali Treatment Time

염기처리시간에 따른 지르코니아 현탁액의 분산성과 굴절율 변화

  • Jo, Choong Hee (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Ham, Dong Seok (Chemical Materials Solutions Center, Korea Research Institute of Chemical Technology) ;
  • Lee, Jae Heung (Chemical Materials Solutions Center, Korea Research Institute of Chemical Technology) ;
  • Ryu, Juwhan (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Lee, Kee-Yoon (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Cho, Seong Keun (Chemical Materials Solutions Center, Korea Research Institute of Chemical Technology)
  • 조충희 (충남대학교 고분자공학과) ;
  • 함동석 (한국화학연구원 화학소재솔루션센터) ;
  • 이재흥 (한국화학연구원 화학소재솔루션센터) ;
  • 류주환 (충남대학교 고분자공학과) ;
  • 이기윤 (충남대학교 고분자공학과) ;
  • 조성근 (한국화학연구원 화학소재솔루션센터)
  • Received : 2016.09.13
  • Accepted : 2016.11.02
  • Published : 2017.01.27

Abstract

Zirconia nanoparticles were widely used as filler in order to get high refractive index layer. However, dispersion of nanoparticles is difficult due to their agglomeration in solvent. In this study, the dispersibility of the zirconia suspension is promoted by controlling the steric hindrance and electrostatic interactions through the adsorption of PEI according to alkali treatment time. Also, to induce improved dispersibility on suspension, we changed the dispersion conditions variously and fabricated an ink formulation method for the coating layer. Zirconia suspension was characterized by dynamic light scattering (DLS), Zeta potential measurement, Transmission Electron Microscope (TEM) and FT-IR. We were able to confirm that good dispersion of zirconia suspension by alkali treatment and PEI led to high refractive index.

Keywords

References

  1. S. Sikarwara, B. C. Yadava, S. Singhb, G. I. Dzhardimalievac, S. I. Pomogailoc, N. D. Golubevac and A. D. Pomogailo, Sens. Actuators, B, 232, 283 (2016). https://doi.org/10.1016/j.snb.2016.03.080
  2. D. Lee, M. F. Rubner and R. E. Cohen, Nano. Lett., 6, 2305 (2006). https://doi.org/10.1021/nl061776m
  3. M. Berber, V. Bulto, R. Kliss and H. Hahn, Scr. Mater., 53, 547 (2005). https://doi.org/10.1016/j.scriptamat.2005.04.047
  4. K. C. Krogman, T. Druffel and M. K. Sunkara, Nanotechnology, 16, 338 (2005). https://doi.org/10.1088/0957-4484/16/7/005
  5. F. J. Ferrer, F. Frutos, J. Garcia-Lopez, A.R. Gonzalez-Elipe and F. Yubero, Thin Solid Films, 516, 481 (2007). https://doi.org/10.1016/j.tsf.2007.07.139
  6. S. Zhao, F. Ma, Z. Song and K. Xu, Opt. Mater., 30, 910 (2008). https://doi.org/10.1016/j.optmat.2007.04.001
  7. T. Fengqiu, H. Xiaoxian, Z. Yufeng and G. Jingkun, Ceram. Int., 26, 93 (2000). https://doi.org/10.1016/S0272-8842(99)00024-3
  8. Z. Xie, J. Ma, Q. Xu, Y. Huang and Y. B. Cheng, Ceram. Int., 30 219 (2004). https://doi.org/10.1016/S0272-8842(03)00092-0
  9. F. Tang, L. Yu, X. Huang and J. Guo, Nanostruct. Mater., 11, 441 (1999). https://doi.org/10.1016/S0965-9773(99)00325-6
  10. K. Luo, S. Zhou and L. Wu, Thin Solid Films, 517, 5974(2009). https://doi.org/10.1016/j.tsf.2009.03.162
  11. M. Sangermano, B. Voit, F. Sordo, K.-J. Eichhorn and G. Rizza, Polymer, 49, 2018 (2008). https://doi.org/10.1016/j.polymer.2008.03.010
  12. X. Li, G. Wang, L. Huang, X. Kang, F. Cheng, W. Zhao and H. Li, Mater. Lett., 148, 22 (2015). https://doi.org/10.1016/j.matlet.2015.02.016
  13. T. Muromachi, T. Tsujino, K. Kamitani and K. Maeda, J. Sol-Gel Sci. Tech., 40, 267 (2006). https://doi.org/10.1007/s10971-006-8386-7
  14. M. Skovgaard, K. Almdal and A. van Lelieveld, J. Mater Sci., 46, 1824 (2011). https://doi.org/10.1007/s10853-010-5007-1
  15. Michael J. Solomon, T. Saeki, Millie Wan, Peter J. Scales, David V. Boger and H. Usui, Langmuir, 15, 20 (1999). https://doi.org/10.1021/la9706577
  16. E. Ukaji, T. Furusawa, M. Sato and N. Suzuki, Appl. Surf. Sci., 254, 563 (2007). https://doi.org/10.1016/j.apsusc.2007.06.061
  17. Jingxian Zhanga, Feng Yeb, Jing Suna, Dongliang Jiangc, Mikio Iwasa, Colloids Surf. A, 254, 199 (2005). https://doi.org/10.1016/j.colsurfa.2004.12.012
  18. A. M. Jastrzcebskaa, J. Karcza, R. Letmanowskib, D. Zabostb, E. Ciecierskaa, J. Zduneka, E. Karwowskac, M. Siekierskib, A. Olszynaa and A. Kunickib, Appl. Surf. Sci., 362, 577 (2016). https://doi.org/10.1016/j.apsusc.2015.10.125
  19. H. G. Pedersen and L. Bergstrom, J. Am. Ceram. Soc., 82, 1137 (1999).
  20. Kuiri F. Tjipangandjara and P. Somasundaran, Colloids Surf., 55, 245 (1991). https://doi.org/10.1016/0166-6622(91)80096-7
  21. Y. K. Leong, P. J. Scales, T. W. Healy and D. V. Boger, Colloids Surf. A, 95, 43 (1995). https://doi.org/10.1016/0927-7757(94)03010-W
  22. J. Cesarano III and I. A. Aksay, J. Am. Ceram. Soc., 71, 1062 (1988). https://doi.org/10.1111/j.1151-2916.1988.tb05792.x
  23. Jiakuan Sun, Bhaskar V. Velamakanni, William W. Gerberich and Lorraine F. Francis, J. Colloid Interf. Sci., 280, 387 (2004). https://doi.org/10.1016/j.jcis.2004.08.014
  24. B. Faurea, G. Salazar-Alvareza, A. Ahniyazb, I. Villaluengac, G. Berriozabalc, Y. R De Miguelc and L. Bergstroma, Sci. Technol. Adv. Mater., 14, 023001 (2013). https://doi.org/10.1088/1468-6996/14/2/023001
  25. N. Khanam, C. Mikoryak, R. K. Draper and K. J. Balkus Jr, Acta Biomater., 3, 1050 (2007). https://doi.org/10.1016/j.actbio.2007.06.005
  26. Tasoula Kyprianidou-Leodidou, Walter Caseri and Ulrich W. Suter'J, Phys. Chem., 98, 8992 (1994). https://doi.org/10.1021/j100087a029
  27. K. L. Cho, Irving I. Liaw, Alex H.-F. Wu and Robert N. Lamb, J. Phys. Chem. C, 114, 11228 (2010). https://doi.org/10.1021/jp103479k
  28. Guillaumee, M., Liley, M.,Pugin, R. and Stanley, R. P., Opt. Express, 16, 1440 (2008). https://doi.org/10.1364/OE.16.001440
  29. Benjamin E. Reed, Roy G. Grainger, Daniel M. Peters and Andrew J. A. Smith, J. Opt. Soc. Am., 24, 1953(2016).