• Title/Summary/Keyword: Scanning Mobility Particle Sizer(SMPS)

Search Result 53, Processing Time 0.017 seconds

Development and Evaluation of Hy-SMPS (Hy-SMPS의 개발 및 성능평가)

  • Lee, Hong-Ku;Eun, Hee-Ram;Lee, Gun-Ho;Ahn, Kang-Ho
    • Particle and aerosol research
    • /
    • v.11 no.2
    • /
    • pp.57-61
    • /
    • 2015
  • Atmospheric nano-particles along the altitude is one of the main factors causing severe weather phenomena. It is a challenge to find the precise particle size distribution. One useful instrument includes a scanning mobility particle sizer (SMPS). This measures the size distribution of submicron aerosols. The SMPS consists of a condensation particle counter (CPC), differential mobility analyzer (DMA), high voltage power supplier (HVPS), and neutralizer. Due to the many components, it is difficult to install a commercial SMPS into a tethered balloon package system (Eun, 2011). In this study, we customized a SMPS for the tethered balloon package system called Hy-SMPS. It is portable, compact in structure, and evaluated by TSI SMPS using mono and poly-dispersed particles.

Comparison of Real Time Nanoparticle Monitoring Instruments in the Workplaces

  • Ham, Seunghon;Lee, Naroo;Eom, Igchun;Lee, Byoungcheun;Tsai, Perng-Jy;Lee, Kiyoung;Yoon, Chungsik
    • Safety and Health at Work
    • /
    • v.7 no.4
    • /
    • pp.381-388
    • /
    • 2016
  • Background: Relationships among portable scanning mobility particle sizer (P-SMPS), condensation particle counter (CPC), and surface area monitor (SAM), which are different metric measurement devices, were investigated, and two widely used research grade (RG)-SMPSs were compared to harmonize the measurement protocols. Methods: Pearson correlation analysis was performed to compare the relation between P-SMPS, CPC, and SAM and two common RG-SMPS. Results: For laboratory and engineered nanoparticle (ENP) workplaces, correlation among devices showed good relationships. Correlation among devices was fair in unintended nanoparticle (UNP)-emitting workplaces. This is partly explained by the fact that shape of particles was not spherical, although calibration of sampling instruments was performed using spherical particles and the concentration was very high at the UNP workplaces to allow them to aggregate more easily. Chain-like particles were found by scanning electron microscope in UNP workplaces. The CPC or SAM could be used as an alternative instrument instead of SMPS at the ENP-handling workplaces. At the UNP workplaces, where concentration is high, real-time instruments should be used with caution. There are significant differences between the two SMPSs tested. TSI SMPS showed about 20% higher concentration than the Grimm SMPS in all workplaces. Conclusions: For nanoparticle measurement, CPC and SAM might be useful to find source of emission at laboratory and ENP workplaces instead of P-SMPS in the first stage. An SMPS is required to measure with high accuracy. Caution is necessary when comparing data from different nanoparticle measurement devices and RG-SMPSs.

Monitoring of Airborne Fine Particle using SMPS in Ansan Area (SMPS(Scanning Mobility Particle Sizer)를 이용한 안산지역 대기중 초미세입자(30\~500nm) 분포연구)

  • Kim Yong-min;Ahn Kang-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.3
    • /
    • pp.295-301
    • /
    • 2005
  • The fine particles in the range of $30\~500nm$ are monitored at Hanyang University campus in Ansan using house made DMA (differential mobility analyzer) and commercial CPC (condensation particle counter, TSI inc.) in SMPS mode. The monitoring period is March 16th 2004 through May 7th, 2004. During the monitoring period, Aitken nuclei mode $(30\~100nm)$ particle concentration has a tendency of increase in the morning and evening hours. However, the accumulation mode $(100\~500nm)$ particle concentration stays rather stable than that of Aitken mode.

Performance Evaluation of Domestic -made DOC for the Heavy-duty Diesel Engine (국내 제작된 대형 디젤산화촉매의 배출가스 성능평가)

  • 정일록;엄명도;김종춘;김태승;류정호;임철수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.15-23
    • /
    • 1999
  • In recent years, environmental damage to urban area becomes serious problem due to the exhaust emissions by increasing the number of vehicle . Especially, diesel particulate matters(DPM) are hazardous air pollutant s to human health and environment. The reduction technologies of exhaust emissions from diesel engines are improvement of engine combustion, fuel quality and development of diesel exhaust aftertreatment. In this study, a diesel oxidation catalyst(DOC) that is one of diesel exhaust aftertreatments was made for performance evaluation . It was tested for NA and turbocharged engine by D-13 mode that currently be used for regulation driving test mode in Korea Scanning mobility particle sizer (SMPS) was used for the analysis of the particle size distribution with and w/o DOC. As the results , for NA and tubochartged engine, CO, THC, DPM was respectively reduced 85.7, 40.7,3.3% and 79.1, 53.1, 11.6% by DOC. Test results of particle size distribution was showed that particle number is 107 ~108per ㎤ , 2 $\times$105 ~5$\times$105$\mu\textrm{g}$/㎥ for weight concentration and 100~200nm for particle mean size in diesel engine and there is no effect to reduce the particle concentration by the DOC.

  • PDF

The Effect of Water Droplets on the Nano Particle Size Distribution using the SMPS System (SMPS 시스템에서 용매(물)가 나노입도측정결과에 미치는 영향)

  • Hwangbo, Seon-Ae;Chu, Min-Cheol
    • Journal of Powder Materials
    • /
    • v.20 no.2
    • /
    • pp.129-133
    • /
    • 2013
  • In this paper we have studied the effect of water droplet size on nano-particle size distribution using SMPS(Scanning Mobility Particle Sizer)system. It can be seen that the unknown peak at >100 nm was caused by water droplets which did not dry completely when DI water was used as a solvent in the SMPS system. Therefore, it is important to dry water droplets generated from atomizer in the SMPS system when measuring the particle size distribution using less than 100 nm nano-particles in diameter. From this study, It can be concluded that the napion was a useful material as dryer ones and using EAG(Electro Aerosol Generator) as a particle generator was the most effective in reducing the effect of water droplets.

A Study on the Particles Density Estimation in Seoul Metropolitan (서울시 미세먼지의 밀도 추정에 관한 연구)

  • Kim, Shin-Do;Kim, Chang-Hwan;Hwang, Ui-Hyun
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.2
    • /
    • pp.131-136
    • /
    • 2008
  • The variation of the particle size distribution and density as well as the chemical composition of aerosols is important to evaluate the particles. This study measured and analyzed airborne particles using a scanning mobility particle sizer (SMPS) system and an aerodynamic particle sizer (APS) at the University of Seoul during every season. The highest particle number concentration of airborne particles less than $0.9\;{\mu}m$, occurred in winter, while the highest particle number concentration of airborne particles more than $0.9\;{\mu}m$, occurred in spring. Mass concentration appeared highest at spring. Also, when we compared $\beta$-ray's mass concentration with calculated mass concentration by using the SMPS-APS system during each season, density of the winter is $1.92\;g/cm^3$, spring density is $1.64\;g/cm^3$, fall density is $1.57\;g/cm^3$. We found out that PM10 density was differ every season. However, while the calculated density is whole density for PM10 the density of each diameter was different. In this study the density estimation equation of the QCM cascade impactor measured mass concentration of each diameter.

In-situ Particle Characterization of Cu Nanopowder using Scanning Mobility Particle Sizer in Pulsed Wire Evaporation Method (전기폭발법에서 SMPS를 이용한 Cu 나노분말의 실시간 입자특성평가)

  • 이창우;맹덕영;박중학;유지훈;이재훈;이창규;김흥회
    • Journal of Powder Materials
    • /
    • v.10 no.4
    • /
    • pp.275-280
    • /
    • 2003
  • Synthesis and characteristics of Cu nanopowder were considered by in-situ characterization method using SMPS in pulsed wire evaporation process. With increasing pressure in chamber, particle size and degree of agglomeration increased by increase of collision frequency. Also, it was found from the XRD analyses and BET measurements that crystallite size and particle size decreased with elevating applied voltage. However, SMPS measurements and TEM observation revealed the increase of particle size and degree of agglomeration with increase of applied voltage. These results suggested that particle growth and agglomeration depend on overheating factor in chamber at the early stage and thermal coagulation in filtering system during powder formation until collection.

Development and Performance Evaluation of Radial Exhaust Multi-port System for Real-time Particle Size Distribution Measurement (실시간 입자분포 측정을 위한 Radial Exhaust Multi-port System의 개발 및 성능평가)

  • Lee, Hong Ku;Lee, Yang-Woo;Jeon, Ki Soo;Ahn, Kang-Ho
    • Particle and aerosol research
    • /
    • v.9 no.3
    • /
    • pp.133-137
    • /
    • 2013
  • Measuring particle size distribution is one of the primary concerns in aerosol studies. For a nano-particle size distribution measurement, many scientists use a combination of a differential mobility analyzer (DMA) and a condensation particle counter (CPC) system, which is a called scanning mobility particle sizer (SMPS). Although it has a very high particle size resolution, some issues still remain. These problems include residence time between a DMA and a CPC, discontinuity of a CPC, and disturbance due to long scanning time during the precise measurement of particles. In particular, long scanning time is not adequate for measuring particle size distribution since the particle concentration is changing during the measurement. In this study, we developed radial exhaust multi-port system (REM-system) with no scanning time and high resolution to measure real-time particle size distribution. As a result of the REM-system performed using mono-disperse particle, it is expected that this system will be suitable for measuring continuously changing aerosol. If the counting efficiency of multi-condensation particle counter (M-CPC) and data inversion matrix are completed, REM-system will be a very adequate system for unsteady aerosol, which changes for SMPS scanning time.

Effective density measurement of ambient sub-micron aerosol using SMPS and 1 stage low-pressure impactor (SMPS와 1단 저압 임팩터를 이용한 대기 중 서브 마이크론 에어로졸 유효 밀도 측정)

  • Oh, Jaeho;Han, Jangseop;Park, Geunyoung;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.15 no.3
    • /
    • pp.115-126
    • /
    • 2019
  • In this study, a serial methodology is presented for estimating the effective density of ambient sub-micron aerosol employing lab-made 1 stage low-pressure impactor of Hyun et al. (2015) and SMPS (Scanning Mobility Particle Sizer) together. The effective density from this methodology (Impactor+SMPS) was compared with another methodology (BAM+SMPS) for estimating the effective density employing BAM (Beta-Attenuation Monitor) and SMPS. As a result, the effective density obtained with impactor+SMPS ranged from $0.42g/cm^3$ to $2.36g/cm^3$, while the effective density obtained with BAM+SMPS ranged from $1.01g/cm^3$ to $1.72g/cm^3$. The difference between these results might be caused by the particle loss in the impactor.