DOI QR코드

DOI QR Code

Effective density measurement of ambient sub-micron aerosol using SMPS and 1 stage low-pressure impactor

SMPS와 1단 저압 임팩터를 이용한 대기 중 서브 마이크론 에어로졸 유효 밀도 측정

  • Oh, Jaeho (Department of Mechanical Engineering, Yonsei University) ;
  • Han, Jangseop (Department of Mechanical Engineering, Yonsei University) ;
  • Park, Geunyoung (Department of Mechanical Engineering, Yonsei University) ;
  • Hwang, Jungho (Department of Mechanical Engineering, Yonsei University)
  • Received : 2019.06.19
  • Accepted : 2019.09.26
  • Published : 2019.09.30

Abstract

In this study, a serial methodology is presented for estimating the effective density of ambient sub-micron aerosol employing lab-made 1 stage low-pressure impactor of Hyun et al. (2015) and SMPS (Scanning Mobility Particle Sizer) together. The effective density from this methodology (Impactor+SMPS) was compared with another methodology (BAM+SMPS) for estimating the effective density employing BAM (Beta-Attenuation Monitor) and SMPS. As a result, the effective density obtained with impactor+SMPS ranged from $0.42g/cm^3$ to $2.36g/cm^3$, while the effective density obtained with BAM+SMPS ranged from $1.01g/cm^3$ to $1.72g/cm^3$. The difference between these results might be caused by the particle loss in the impactor.

Keywords

References

  1. Ahlvik, P., Ntziachristos, L., Keskinen, J., and Virtanen, A. (1998). Real time measurements of diesel particle size distribution with an electrical low pressure impactor, SAE transactions, 107, 95-113.
  2. Chien, C.H., Theodore, A., Wu, C.Y., Hsu, Y.M., and Birky, B. (2016). Upon correlating diameters measured by optical particle counters and aerodynamic particle sizers, Journal of Aerosol Science, 101, 77-85. https://doi.org/10.1016/j.jaerosci.2016.05.011
  3. Demokritou, P., Lee, S. J., and Koutrakis, P. (2004). Development and evaluation of a high loading PM2.5 speciation sampler, Aerosol Science & Technology, 38(2), 111-119. https://doi.org/10.1080/02786820490249045
  4. He, C., Morawska, L., Hitchins, J., and Gilbert, D. (2004). Contribution from indoor sources to particle number and mass concentrations in residential houses, Atmospheric Environment, 38(21), 3405-3415. https://doi.org/10.1016/j.atmosenv.2004.03.027
  5. Hinds, W.C. (1999). Aerosol technology: properties, behavior, and measurement of airborne particles, 2nd Ed., New York, John Wiley & Sons, pp. 323-327.
  6. Hu, M., Peng, J., Sun, K., Yue, D., Guo, S., Wiedensohler, A., and Wu, Z. (2012). Estimation of size-resolved ambient particle density based on the measurement of aerosol number, mass, and chemical size distributions in the winter in Beijing, Environmental Science & Technology, 46(18), 9941-9947. https://doi.org/10.1021/es204073t
  7. Hyun, J., Nasr, A. M., Choi, N. K., Park, D., and Hwang, J. (2015). Design and Performance Test of a Lab-Made Single-Stage Low-Pressure Impactor for Morphology Analysis of Diesel Exhaust Particles, Aerosol Science & Technology, 49(10), 895-901. https://doi.org/10.1080/02786826.2015.1081669
  8. Hyun, J., Han, J., Lee, S. G., and Hwang, J. (2018). Design and performance evaluation of a PN1 sensor for real-time measurement of indoor aerosol size distribution, Aerosol and Air Quality Research, 18(2), 285-300. https://doi.org/10.4209/aaqr.2017.08.0263
  9. Kelly, W.P., and McMurry, P.H. (1992). Measurement of particle density by inertial classification of differential mobility analyzer-generated monodisperse aerosols, Aerosol Science & Technology, 17(3), 199-212. https://doi.org/10.1080/02786829208959571
  10. Liu, Y.P., and Huang, S.L. (2017). Experimental Investigation of Ion Mobility Measurements in Oxygen under Different Gas Pressures, Journal of Electrical Engineering & Technology, 12(2), 852-857. https://doi.org/10.5370/JEET.2017.12.2.852
  11. Maricq, M.M., Podsiadlik, D.H., and Chase, R.E. (2000). Size distributions of motor vehicle exhaust PM: a comparison between ELPI and SMPS measurements, Aerosol Science & Technology, 33(3), 239-260. https://doi.org/10.1080/027868200416231
  12. Maricq, M.M., and Xu, N. (2004). The effective density and fractal dimension of soot particles from premixed flames and motor vehicle exhaust, Journal of Aerosol Science, 35(10), 1251-1274. https://doi.org/10.1016/j.jaerosci.2004.05.002
  13. Morawska, L., Hofmann, W., Hitchins-Loveday, J., Swanson, C., and Mengersen, K. (2005). Experimental study of the deposition of combustion aerosols in the human respiratory tract, Journal of Aerosol Science, 36(8), 939-957. https://doi.org/10.1016/j.jaerosci.2005.03.015
  14. Park, K., Cao, F., Kittelson, D.B., and McMurry, P.H. (2003). Relationship between particle mass and mobility for diesel exhaust particles, Environmental Science & Technology, 37(3), 577-583. https://doi.org/10.1021/es025960v
  15. Park, D., Kim, S., An, M., Park, G.T., and Hwang, J. (2006). Real-time measurement and data inversion of size distribution of diesel exhaust particles using a portable 4-stage electrical low pressure impactor (P-ELI), Particle and Aerosol Research, 2(2), 83-92.
  16. Park, D., Kim, S., An, M., and Hwang, J. (2007). Real-time measurement of submicron aerosol particles having a log-normal size distribution by simultaneously using unipolar diffusion charger and unipolar field charger, Journal of Aerosol Science, 38(12), 1240-1245. https://doi.org/10.1016/j.jaerosci.2007.09.002
  17. Peters, T.M., Ott, D., and O'shaughnessy, P.T. (2006). Comparison of the Grimm 1.108 and 1.109 portable aerosol spectrometer to the TSI 3321 aerodynamic particle sizer for dry particles, The Annals of Occupational Hygiene, 50(8), 843-850. https://doi.org/10.1093/annhyg/mel067
  18. Quiros, D.C., Hu, S., Hu, S., Lee, E.S., Sardar, S., Wang, X., Olfert, J.S., Jung, H.S., Zhu, Y., and Huai, T. (2015). Particle effective density and mass during steady-state operation of GDI, PFI, and diesel passenger cars, Journal of Aerosol Science, 83, 39-54. https://doi.org/10.1016/j.jaerosci.2014.12.004
  19. Rissler, J., Messing, M.E., Malik, A.I., Nilsson, P.T., Nordin, E.Z., Bohgard, M., Sanati M., and Pagels, J.H. (2013). Effective density characterization of soot agglomerates from various sources and comparison to aggregation theory, Aerosol Science & Technology, 47(7), 792-805. https://doi.org/10.1080/02786826.2013.791381
  20. Ristimaki, J., Virtanen, A., Marjamaki, M., Rostedt, A., and Keskinen, J. (2002). On-line measurement of size distribution and effective density of submicron aerosol particles, Journal of Aerosol Science, 33(11), 1541-1557. https://doi.org/10.1016/S0021-8502(02)00106-4
  21. Stein, S.W., Turpin, B.J., Cai, X., Huang, P.F., and Mcmurry, P.H. (1994). Measurements of relative humidity-dependent bounce and density for atmospheric particles using the DMA-impactor technique, Atmospheric Environment, 28(10), 1739-1746. https://doi.org/10.1016/1352-2310(94)90136-8
  22. Talbot, N., Kubelova, L., Makes, O., Cusack, M., Ondracek, J., Vodicka, P., Schwarz, J., and Zdimal, V. (2016). Outdoor and indoor aerosol size, number, mass and compositional dynamics at an urban background site during warm season, Atmospheric Environment, 131, 171-184. https://doi.org/10.1016/j.atmosenv.2016.01.055
  23. Wierzbicka, A., Nilsson, P.T., Rissler, J., Sallsten, G., Xu, Y., Pagels, J.H., Albin, M., Osterberg, K., Strandberg, B., Eriksson, A., Bohgard, M., Bergemalm-Rynell, K., and Gudmundsson, A. (2014). Detailed diesel exhaust characteristics including particle surface area and lung deposited dose for better understanding of health effects in human chamber exposure studies, Atmospheric Environment, 86, 212-219. https://doi.org/10.1016/j.atmosenv.2013.11.025