• 제목/요약/키워드: Scalar Multiplication

검색결과 102건 처리시간 0.027초

타원곡선에서 스칼라 곱의 고속연산 (A fast scalar multiplication on elliptic curves)

  • 박영호;한동국;오상호;이상진;임종인;주학수
    • 정보보호학회논문지
    • /
    • 제12권2호
    • /
    • pp.3-10
    • /
    • 2002
  • Koblitz 타원곡선에서 스칼라 곱을 효율적으로 구현하기 위하여 프로베니우스 자기준동형 (Frobenius endomorphism)이 유용하게 사용된다. 스칼라 곱 연산시 스칼라를 이진 전개하는 대신에 프로베니우스 확장을 사용하여 고속연산을 가능하게 할 수 있으며 따라서 연산의 속도는 확장길이와 밀접한 관계가 있다. 본 논문은 스칼라의 프로베니우스 확장길이를 줄임으로써 스칼라 곱의 고속연산을 가능하게 하는 새로운 방법을 제안한다. 타원곡선의 위수를 노름(Norm)으로 갖는 원소대신 큰 소수 위수를 노름으로 갖는 원소를 사용하여 프로베니우스 확장길이를 최적화시키는 이 방법은 Solinas, Smart가 제안한 방법보다 프로베니우스 확장길이를 더 감소시킬 수 있다.

Speeding up Scalar Multiplication in Genus 2 Hyperelliptic Curves with Efficient Endomorphisms

  • Park, Tae-Jun;Lee, Mun-Kyu;Park, Kun-Soo;Chung, Kyo-Il
    • ETRI Journal
    • /
    • 제27권5호
    • /
    • pp.617-627
    • /
    • 2005
  • This paper proposes an efficient scalar multiplication algorithm for hyperelliptic curves, which is based on the idea that efficient endomorphisms can be used to speed up scalar multiplication. We first present a new Frobenius expansion method for special hyperelliptic curves that have Gallant-Lambert-Vanstone (GLV) endomorphisms. To compute kD for an integer k and a divisor D, we expand the integer k by the Frobenius endomorphism and the GLV endomorphism. We also present improved scalar multiplication algorithms that use the new expansion method. By our new expansion method, the number of divisor doublings in a scalar multiplication is reduced to a quarter, while the number of divisor additions is almost the same. Our experiments show that the overall throughputs of scalar multiplications are increased by 15.6 to 28.3 % over the previous algorithms when the algorithms are implemented over finite fields of odd characteristics.

  • PDF

SCALAR MULTIPLICATION ON GENERALIZED HUFF CURVES USING THE SKEW-FROBENIUS MAP

  • Gyoyong Sohn
    • East Asian mathematical journal
    • /
    • 제40권5호
    • /
    • pp.551-557
    • /
    • 2024
  • This paper presents the Frobenius endomorphism on generalized Huff curve and provides the characteristic polynomial of the map. By applying the Frobenius endomorphism on generalized Huff curve, we construct a skew-Frobenius map defined on the quadratic twist of a generalized Huff curve. This map offers an efficiently computable homomorphism for performing scalar multiplication on the generalized Huff curve over a finite field. As an application, we describe the GLV method combined with the Frobenius endomorphism over the curve to speed up the scalar multiplication.

최적확장체 위에서 정의되는 타원곡선에서의 고속 상수배 알고리즘 (Fast Scalar Multiplication Algorithm on Elliptic Curve over Optimal Extension Fields)

  • 정병천;이수진;홍성민;윤현수
    • 정보보호학회논문지
    • /
    • 제15권3호
    • /
    • pp.65-76
    • /
    • 2005
  • EC-DSA나 EC-ElGamal과 같은 타원곡선 암호시스템의 성능 향상을 위해서는 타원곡선 상수배 연산을 빠르게 하는 것이 필수적이다. 타원곡선 특유의 Frobenius 사상을 이용한 $base-{\phi}$ 전개 방식은 Koblitz에 의해 처음 제안되었으며, Kobayashi 등은 최적확장체 위에서 정의되는 타원곡선에 적용할 수 있도록 $base-{\phi}$ 전개 방식을 개선하였다. 그러나 Kobayashi 등의 방법은 여전히 개선의 여지가 남아있다. 본 논문에서는 최적확장체에서 정의되는 타원곡선상에서 효율적인 상수배 연산 알고리즘을 제안한다. 제안한 상수배 알고리즘은 Frobenius사상을 이용하여 상수 값을 Horner의 방법으로 $base-{\phi}$ 전개하고, 이 전개된 수식을 최적화된 일괄처리 기법을 적용하여 연산한다. 제안한 알고리즘을 적용할 경우, Kobayashi 등이 제안한 상수배 알고리즘보다 $20\%{\sim}40\%$ 정도의 속도 개선이 있으며, 기존의 이진 방법에 비해 3배 이상 빠른 성능을 보인다.

SPA에 견디는 스칼라 곱셈 방법과 하드웨어 (A Scalar Multiplication Method and its Hardware with resistance to SPA(Simple Power Analysis))

  • 윤중철;정석원;임종인
    • 정보보호학회논문지
    • /
    • 제13권3호
    • /
    • pp.65-70
    • /
    • 2003
  • 본 논문에서는 side-channel 공격법 중 SPA(Simple Power Analysis)에 견디면서도 효율적인 연산이 가능한 scalar multiplication 방법과 하드웨어 구조를 제시한다. 기존에 제시된 SPA에 견디는 스칼라 곱셈 방법은 연산 속도가 느린 것이 약점이다. 따라서 이를 보안하는 방법에 대한 연구는 중요한 분야이다. 본 논문에서 제시한 타원곡선암호법 전용 하드웨어는 SPA에 견디면서도 동일한 유한체 연산기(multiplier, inverter)를 사용한다는 가정 하에 Coron의 방법 보다 연산 속도가 빠른 스칼라 곱셈 방법과 구조를 제시한다. 논문에서 제시하는 하드웨어는 n비트 키를 사용할 때 연산 속도가 2n·(Inversion cycle)+3(Multiplication cycle)만이 소요된다.

초 타원 곡선 암호시스템에서 동시 역원 알고리즘을 가진 안전한 스칼라 곱셈 (Secure Scalar Multiplication with Simultaneous Inversion Algorithm in Hyperelliptic Curve Cryptosystem)

  • 박택진
    • 한국정보전자통신기술학회논문지
    • /
    • 제4권4호
    • /
    • pp.318-326
    • /
    • 2011
  • 유비쿼터스 환경에서 계산의 복잡성,메모리,전력소비등의 제약성으로 인하여 공개키 암호시스템을 적용하기는 매우 어렵다. 초타원 곡선 암호시스템은 RSA나 ECC보다 짧은 비트 길이를 가지고 동일한 안전성을 제공한다. 초타원 곡선 암호시스템에서 스칼라 곱셈은 핵심적인 연산이다. T.Lange는 다수의 좌표를 사용하여 초타원 곡선 암호시스템에서 역원 연산이 없는 스칼라 곱셈 알고리즘을 개발 하였다.그러나 다수의 좌표를 사용하는 것은 SCA에 노출되고 더 많은 메모리가 요구 된다. 본 논문에서는 초 타원곡선 암호시스템에서 동시원알고리즘을 가진 안전한 스칼라 곱셈 알고리즘을 개발하였다. 안전성 과 성능을 위하여 동시역원 알고리즘을 적용하였다 개발한 알고리즘은 SPA와 DPA 에 안전하다.

이진 에드워즈 곡선 공개키 암호를 위한 257-비트 점 스칼라 곱셈의 효율적인 하드웨어 구현 (An Efficient Hardware Implementation of 257-bit Point Scalar Multiplication for Binary Edwards Curves Cryptography)

  • 김민주;정영수;신경욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.246-248
    • /
    • 2022
  • Bernstein이 제안한 새로운 타원곡선 형태인 이진 에드워즈 곡선 (binary Edwards curves; BEdC)는 예외점이 없어 완전한 덧셈 법칙이 만족한다. 본 논문에서는 투영 좌표계를 적용한 BEdC 상의 점 스칼라 곱셈의 효율적인 하드웨어 구현에 대해 기술한다. 점 스칼라 곱셈을 위해 modified Montgomery ladder 알고리듬을 적용하였으며, 257-비트 이진 덧셈기와 이진 제곱기, 32-비트 이진 곱셈기를 사용하여 하위 이진체 연산을 구현했다. Zynq UltraScale+ MPSoC 디바이스에 구현하여 설계된 BEdC 크립토 코어를 검증하였으며, 점 스칼라 곱셈 연산에 521,535 클록 사이클이 소요된다.

  • PDF

FROBENIUS ENDOMORPHISMS OF BINARY HESSIAN CURVES

  • Gyoyong Sohn
    • East Asian mathematical journal
    • /
    • 제39권5호
    • /
    • pp.529-536
    • /
    • 2023
  • This paper introduces the Frobenius endomophisms on the binary Hessian curves. It provides an efficient and computable homomorphism for computing point multiplication on binary Hessian curves. As an application, it is possible to construct the GLV method combined with the Frobenius endomorphism to accelerate scalar multiplication over the curve.

Improved Scalar Multiplication on Elliptic Curves Defined over $F_{2^{mn}}$

  • Lee, Dong-Hoon;Chee, Seong-Taek;Hwang, Sang-Cheol;Ryou, Jae-Cheol
    • ETRI Journal
    • /
    • 제26권3호
    • /
    • pp.241-251
    • /
    • 2004
  • We propose two improved scalar multiplication methods on elliptic curves over $F_{{q}^{n}}$ $q= 2^{m}$ using Frobenius expansion. The scalar multiplication of elliptic curves defined over subfield $F_q$ can be sped up by Frobenius expansion. Previous methods are restricted to the case of a small m. However, when m is small, it is hard to find curves having good cryptographic properties. Our methods are suitable for curves defined over medium-sized fields, that is, $10{\leq}m{\leq}20$. These methods are variants of the conventional multiple-base binary (MBB) method combined with the window method. One of our methods is for a polynomial basis representation with software implementation, and the other is for a normal basis representation with hardware implementation. Our software experiment shows that it is about 10% faster than the MBB method, which also uses Frobenius expansion, and about 20% faster than the Montgomery method, which is the fastest general method in polynomial basis implementation.

  • PDF

곱셈 지도에 관한 고찰 (The Study of Teaching Multiplication)

  • 강문봉;김정하
    • 한국초등수학교육학회지
    • /
    • 제22권4호
    • /
    • pp.369-384
    • /
    • 2018
  • 곱셈은 동수누가, 배, 곱집합을 포함한 여러 가지 의미를 가지고 있고 다양한 상황에서 사용된다. 초등학교에서 곱셈의 이러한 다양한 의미는 교과서에 구체화되어 있으며 지도 방법이나 지도 순서가 다른 개념이나 연산에 비해 매우 안정적으로 정착되어 있다. 그럼에도 불구하고 좀더 보완되고 개선될 여지가 있어 보인다. 이 연구는 곱셈의 여러 개념적 측면들이 어떤 유사점과 차이점이 있는지를 문헌을 통해 고찰해 보고 교과서 분석을 통해 그 지도 방법과 지도 순서가 적절한지를 분석해 보려는 것이다. 연구 결과, 배 개념이 너무 일찍 도입되었으며, 그 이후 곱셈 지도에서 배 개념을 제대로 반영하지 못하였음을 알 수 있었다. 또한 양과 양의 곱셈을 직사각형 넓이 개념을 이용하여 지도할 필요성도 있었다.

  • PDF