DOI QR코드

DOI QR Code

SCALAR MULTIPLICATION ON GENERALIZED HUFF CURVES USING THE SKEW-FROBENIUS MAP

  • Gyoyong Sohn (Department of Mathematics Education, Daegu National University of Education)
  • Received : 2024.06.14
  • Accepted : 2024.09.30
  • Published : 2024.09.30

Abstract

This paper presents the Frobenius endomorphism on generalized Huff curve and provides the characteristic polynomial of the map. By applying the Frobenius endomorphism on generalized Huff curve, we construct a skew-Frobenius map defined on the quadratic twist of a generalized Huff curve. This map offers an efficiently computable homomorphism for performing scalar multiplication on the generalized Huff curve over a finite field. As an application, we describe the GLV method combined with the Frobenius endomorphism over the curve to speed up the scalar multiplication.

Keywords

References

  1. R. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen and F. Vercauteren, Handbook of Elliptic and Hyperelliptic Cryptography, Chapman and Hall/CRC, 2006.
  2. T. Iijima, K. Matsuo, J. Chao and S. Tsujii, Construction of Frobenius Maps of Twists Elliptic Curves and its Application to Elliptic Scalar Multiplication, in SCIS 2002, IEICE Japan, January 2002, 699-702.
  3. R. P. Gallant, R. J. Lambert and S. A. Vanstone, Faster Point Multiplication on Elliptic Curves with Efficient Endomorphisms, In J. Kilian (ed.), CRYPTO 2001, Springer LNCS 2139 (2001), 190-200.
  4. S. D. Galbraith, X. Lin, M. Scott, Endomorphisms for faster elliptic curve cryptography on a large class of curves, J. Cryptology 24(3), 446-469, 2011.
  5. J. Guajardo and C. Paar, Itoh-tusji version in standard basis and its applicaiton in cryptography and codes, Design, Codes and Cryptography 25 (2002), no. 2, 207-216.
  6. G. B. Huff, Diophantine problems in geometry and elliptic ternary forms, Duke Math. J., 15:443-453, 1948.
  7. M. Joye, M. Tibbouchi, and D. Vergnaud, Huff 's Model for Elliptic Curves, Algorithmic Number Theory - ANTS-IX, Lecture Notes in Computer Science Vol. 6197, Springer, pp. 234-250, 2010.
  8. N. Koblitz, Elliptic curve cryptosystems, Math. Comp. 48 (1987), 203-209.
  9. V. S. Miller, Use of elliptic curves in cryptography, In H. C. Williams, editor, Advances in Cryptology-CRYPTO'85, Lect. Notes Comput. Sci. 218 (1986), 417-426.
  10. H. Wu, R. Feng. Elliptic curves in Huff's model, 2010, Available at http://eprint.iacr.org/2010/390.
  11. H. Wu and R. Feng, Elliptic curves in Huff 's model eprint.iacr.org/2010/390.pdf
  12. D. Yong and G. Feng, High speed modular divider based on GCD algorithm over GF(2m), Journal of communications 29 (2008), no. 10, 199-204.