Jong Min Park;Seungki Jo;Sooho Jung;Jinhee Bae;Linh Ba Vu;Kwi-Il Park;Kyung Tae Kim
한국분말재료학회지
/
제31권3호
/
pp.236-242
/
2024
The development of thermoelectric (TE) materials to replace Bi2Te3 alloys is emerging as a hot issue with the potential for wider practical applications. In particular, layered Zintl-phase materials, which can appropriately control carrier and phonon transport behaviors, are being considered as promising candidates. However, limited data have been reported on the thermoelectric properties of metal-Sb materials that can be transformed into layered materials through the insertion of cations. In this study, we synthesized FeSb and MnSb, which are used as base materials for advanced thermoelectric materials. They were confirmed as single-phase materials by analyzing X-ray diffraction patterns. Based on electrical conductivity, the Seebeck coefficient, and thermal conductivity of both materials characterized as a function of temperature, the zT values of MnSb and FeSb were calculated to be 0.00119 and 0.00026, respectively. These properties provide a fundamental data for developing layered Zintl-phase materials with alkali/alkaline earth metal insertions.
As next generation nonvolatile memory, chalcogenide-based phase change memory can substitute for a conventional flash memory from its high performance. Also, fast writing speed, low writing voltage, high sensing margin, low power consumption and repetition reliability over $10^{15}$ cycle shows its possibility. At our laboratory, we invented ${Ge_1}{Se_1}{Te_2}$ material to alternate with conventional ${Ge_2}{Sb_2}{Te_5}$ for improve its ability. We respect the ${Ge_1}{Se_1}{Te_2}$ material can be a solution for high power consumption problem and long time at 'set' performance. A conductivity experiment from variable temperature was performed to see reliability of repetition at read and write performance. Compare with conventional ${Ge_2}{Sb_2}{Te_5}$ material, these two materials are used as complex compound to get the finest parameter.
FeVSb1-xTex (0.02 ≤ x ≤ 0.10) half-Heusler alloys were fabricated by mechanical alloying process and subsequent vacuum hot pressing. Near single half-Heusler phases are formed in vacuum hot pressed samples but a second phase of FeSb2 couldn't be avoided. After doping, the lattice thermal conductivity in the system was shown to decrease with increasing Te concentration and with increasing temperature. The lowest thermal conductivity was achieved for FeVSb0.94Te0.06 sample at about 657 K. This considerable reduction of thermal conductivities is attributed to the increased phonon scattering enhanced by defect structure, which is formed by doping of Te at Sb site. The phonon scattering might also increase at grain boundaries due to the formation of fine grain structure. The Seebeck coefficient increased considerably as well, consequently optimizing the thermoelectric figure of merit to a peak value of ~0.24 for FeVSb0.94Te0.06. Thermoelectric properties of various Te concentrations were investigated in the temperature range of around 300~973 K.
Bismuth-antimony-telluride based thermoelectric thin film materials were prepared by metal organic vapor phase deposition using trimethylbismuth, triethylantimony and diisopropyltelluride as metal organic sources. A planar type thermoelectric device has been fabricated using p-type $Bi_{0.4}Sb_{1.6}Te_3$ and n-type $Bi_2Te_3$ thin films. Firstly, the p-type thermoelectric element was patterned after growth of $4{\mu}m$ thickness of $Bi_{0.4}Sb_{1.6}Te_3$ layer. Again n-type $Bi_2Te_3$ film was grown onto the patterned p-type thermoelectric film and n-type strips are formed by using selective chemical etchant for $Bi_2Te_3$. The top electrical connector was formed by thermally deposited metal film. The generator consists of 20 pairs of p- and n-type legs. We demonstrate complex structures of different conduction types of thermoelectric element on same substrate by two separate runs of MOCVD with etch-stop layer and selective etchant for n-type thermoelectric material. Device performance was evaluated on a number of thermoelectric devices. To demonstrate power generation, one side of the device was heated by heating block and the voltage output was measured. The highest estimated power of 1.3mW is obtained at the temperature difference of 45K. We provide a promising approach for fabricating thin film thermoelectric generators by using MOCVD grown thermoelectric materials which can employ nanostructures for high thermoelectric properties.
The phase transition behavior of $Ge_2Sb_2Te_5$ (GST) thin film, which is a candidate material of recording layer for phase change random access memory (PRAM), has been evaluated using an in-situ reflectance measurement method. The experimental data have been analyzed by using johnson-mehl-avrami-kolomogorov (JMAK) model. JMAK model can be used only in isothermal state. However, temperature changes with time during the operation of PRAM. To apply JMAK equation to PRAM simulation, it has been assumed that the temperature increases stepwise and isothermally. By using JMAK equation and assumption for the transient state, the phase transition behavior of GST thin film has been predicted under $3^{\circ}C/min$ heating rate in this study. The simulation result agrees well with the experimental results. Therefore, It can be concluded that JMAK equation can be used far the PRAM simulation model.
Effect of Ge2Sb2Te5 (GST) chalcogen composition on plasma induced damage was investigated by using Ar ions and F radicals. Experiments were carried out with three different modes; the physical etching, the chemical etching, and the ion-enhanced chemical etching mode. For the physical etching by Ar ions, the sputtering yield was obtained according to ion bombarding energy and there was no change in GST composition ratio. In the plasma mode, the lowest etch rate was measured at the same applied power and there was also no plasma induced damage. In the ion-enhanced chemical etching conditions irradiated with high energy ions and F halogen radicals, the GST composition ratio was changed according to the density of F radicals, resulting in higher roughness of the etched surface. The change of GST composition ratio in halogen plasma is caused by the volatility difference of GST-halogen compounds with high energy ions over than the activation energy of surface reactions.
Recently, the nanowire configuration of GST showed nanosecond-level phase switch at very low power dissipation, suggesting that the nanowires could be ideal for data storage devices. In spite of many advantages of IST materials, their feasibility in both thin films and nanowires for electronic memories has not been extensively investigated. The synthesis of the chalcogenide nanowires was mainly preformed via a vapor transport process such as vapor-liquid-solid (VLS) growth at a high temperature. However, in this study, IST nanowires as well as thin films were prepared at a low temperature (${\sim}250^{\circ}C$) by metal organic chemical vapor deposition(MOCVD) method, which is possible for large area deposition. The IST films and/or nanowires were selectively grown by a control of working pressure at a constant growth temperature by MOCVD. In-Sb-Te NWs will be good candidate materials for high density PRAM applications. And MOCVD system is powerful for applying ultra scale integration cell.
We reported here nano-scale electrical phase-change recording in amorphous $Ge_2Sb_2Te_5$ media using an atomic force microscope (AFM) having conducting probes. In recording process, a pulse voltage is applied to the conductive probe that touches the media surface to change locally the electrical resistivity of a film. However, in contact operation, tip/media wear and contamination could major obstacles, which degraded SNR, reproducibility, and lifetime. In order to overcome tip/media wear and contamination in contact mode operation, we adopted the W incorporated diamond-like carbon (W-DLC) films as a protective layer. Optimized mutilayer media were prepared by a hybrid deposition system of PECVD and RF magnetron sputtering. When suitable electrical pulses were applied to media through the conducting probe, it was observed that data bits as small as 25 nm in diameter have been written and read with good reproducibility, which corresponds to a data density of $1 Tbit/inch^2$. We concluded that stable electrical phase-change recording was possible mainly due to W-DLC layer, which played a role not only capping layer but also resistive layer.
$Ge_2Sb_2Te_5$ (GST)는 광학 스토리지 및 PRAM(Phase-change Random Access Memory)에 적용 가능한 대표적인 상변화 물질이며 상변화 거동에 대한 다양한 연구가 진행되고 있다. 차세대 비휘발성 메모리로 각광을 받고 있는 PRAM의 경우 저전력 그러나 향후 고집적, 고성능 PRAM 소자구현을 위해서는 Reset 전류 감소를 통한 소비 전력 감소, 인접 셀간의 'cross talking'을 방지할 수 있는 열적 안정성 개선 등의 문제점들을 해결해야 한다. GST 물질의 전기적, 열적 특성을 조절하여 이러한 문제를 해결하기 위하여 GST 물질에 이종의 원소를 첨가하는 연구가 활발히 진행되고 있으며, 특히 질소 첨가에 의해 결정 성장 억제를 통한 결정화 온도 증가, 결정질의 저항 증가 등의 보고가 있었다. 본 연구에서는 질소를 첨가한 N-doped $Ge_2Sb_2Te_5$ (NGST) 박막의 상변화 거동을 규명하고 GST 박막과 비교하여 첨가된 질소의 영향을 분석하고자 한다. D.C Magnetron sputtering 방법으로 증착된 GST와 NGST 박막을 등온으로 유지하여 각 온도별로 열처리 시간 증가에 따른 비저항을 실시간으로 측정하여 GST와 NGST 박막의 상분율을 계산하고 Kissinger 모델을 이용하여 effective activation energy ($E_a$)를 구하였다. GST와 NGST 박막의 $E_a$는 각각 $2.08\;{\pm}\;0.11\;eV$와 $2.66\;{\pm}\;0.12\;eV$로 계산되었다. 따라서 첨가된 질소에 의해 NGST 박막의 결정화를 위하여 GST 박막의 경우보다 더 큰 활성화 에너지가 필요하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.