• Title/Summary/Keyword: Saturation Property

Search Result 170, Processing Time 0.023 seconds

Physical Properties of Fe Particles Fine-dispersed in AlN Thin Films (Fe 입자를 미세 분산 시킨 AlN 박막의 물리적 성질)

  • Han, Chang-Suk;Kim, Jang-Woo
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.28-33
    • /
    • 2011
  • This paper describes the fabrication of AlN thin films containing iron and iron nitride particles, and the magnetic and electrical properties of such films. Fe-N-Al alloy films were deposited in Ar and $N_2$ mixtures at ambient temperature using Fe/Al composite targets in a two-facing-target DC sputtering system. X-ray diffraction results showed that the Fe-N-Al films were amorphous, and after annealing for 5 h both AlN and bcc-Fe/bct-$FeN_x$ phases appeared. Structure changes in the $FeN_x$ phases were explained in terms of occupied nitrogen atoms. Electron diffraction and transmission electron microscopy observations revealed that iron and iron nitride particles were randomly dispersed in annealed AlN films. The grain size of magnetic particles ranged from 5 to 20 nm in diameter depending on annealing conditions. The saturation magnetization as a function of the annealing time for the $Fe_{55}N_{20}Al_{25}$ films when annealed at 573, 773 and 873 K. At these temperatures, the amount of iron/iron nitride particles increased with increasing annealing time. An increase in the saturation magnetization is explained qualitatively in terms of the amount of such magnetic particles in the film. The resistivity increased monotonously with decreasing Fe content, being consistent with randomly dispersed iron/iron nitride particles in the AlN film. The coercive force was evaluated to be larger than $6.4{\times}10^3Am^{-1}$ (80 Oe). This large value is ascribed to a residual stress restrained in the ferromagnetic particles, which is considered to be related to the present preparation process.

The Study on the Additives and Magnetic Property of YIG Ferrites for Circulator/Isolator (서큘레이터/아이솔레이터용 YIG 페라이트의 첨가제와 자기적 특성 연구)

  • 윤휘영;유승규;이수형;윤종남;김정식
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1155-1161
    • /
    • 2001
  • Yittrium Iron Garnet(YIG) has been used as an important material in the circulator/isolator which is used in RF communication system, mobile phone, adn satellite broadcasting, etc. In this study, we investigated the microstructural and magnetic properties of YIG ferrites with the sintering temperature and additives. We fabricated the YIG ferrites substituted with Ca, In, V by the traditional ceramic sintering method at 1250$\^{C}$, 1275$\^{C}$, 1300$\^{C}$ and 1325$\^{C}$. Powders were granulated by using a spray dryer. Crystallographic and microstructural properties were measured by using XRD and SEM. Magnetic properties were measured by using a VSM for saturation magnetization (4$\pi$M$\_$s/) and FMR (Ferromagnetic Resonance) experiment for ferromagnetic resonance line width (△H). The YIG ferrite, Y$\_$1.6/Ca$\_$1.4/Fe$_4$V$\_$0.7/In$\_$0.3/O$\_$12/, sintered at 1300$\^{C}$, showed higher saturation magnetization and lower ferromagnetic resonance line width than any other sintering temperatures.

  • PDF

Synthesis and Magnetic Property of Nanocrystalline Fe-Ni-Co Alloys during Hydrogen Reduction of Ni0.5Co0.5Fe2O4 (Ni0.5Co0.5Fe2O4의 수소환원에 의한 나노구조 Fe-Ni-Co 합금의 제조 및 자성특성)

  • Paek, Min Kyu;Do, Kyung Hyo;Bahgat, Mohamed;Pak, Jong Jin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.167-173
    • /
    • 2011
  • Nickel cobalt ferrite($Ni_{0.5}Co_{0.5}Fe_2O_4$) powder was prepared through the ceramic route by the calcination of a stoichiometric mixture of NiO, CoO and $Fe_2O_3$ at $1100^{\circ}C$. The pressed pellets of $Ni_{0.5}Co_{0.5}Fe_2O_4$ were isothermally reduced in pure hydrogen at $800{\sim}1100^{\circ}C$. Based on the thermogravimetric analysis, the reduction behavior and the kinetic reaction mechanisms of the synthesized ferrite were studied. The initial ferrite powder and the various reduction products were characterized by X-ray diffraction, scanning electron microscopy, reflected light microscope and vibrating sample magnetometer to reveal the effect of hydrogen reduction on the composition, microstructure and magnetic properties of the produced Fe-Ni-Co alloy. The arrhenius equation with the approved mathematical formulations for the gas solid reaction was applied to calculate the activation energy($E_a$) and detect the controlling reaction mechanisms. In the initial stage of hydrogen reduction, the reduction rate was controlled by the gas diffusion and the interfacial chemical reaction. However, in later stages, the rate was controlled by the interfacial chemical reaction. The nature of the hydrogen reduction and the magnetic property changes for nickel cobalt ferrite were compared with the previous result for nickel ferrite. The microstructural development of the synthesized Fe-Ni-Co alloy with an increase in the reduction temperature improved its soft magnetic properties by increasing the saturation magnetization($M_s$) and by decreasing the coercivity($H_c$). The Fe-Ni-Co alloy showed higher saturation magnetization compared to Fe-Ni alloy.

Physical property evolution along gas hydrate saturation for various grain size distribution (다양한 입도분포에서의 하이드레이트 함유량에 따른 물성 변화 양상 연구)

  • Jung, Jaewoong;Lee, Jaehyung;Lee, Joo Yong;Lee, Minhui;Lee, Donggun;Kim, Sejoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.149-149
    • /
    • 2011
  • 청정 에너지원으로 높은 잠재력을 가지고 있는 가스하이드레이트는 상업적 기술개발이 미확보된 상태임에도, 우리나라에서 부존이 직접적으로 확인되었기 때문에 에너지원으로서 그 중요성이 부각되고 있다. 현재 전세계적으로 가스하이드레이트 개발 및 생산에 관한 연구가 활발히 진행되고 있으며 이에 대한 기초자료로서 가스하이드레이트가 함유된 퇴적층의 물성자료가 필요하다. 이에 따라 본 연구에서는 입도 분포별 총 5가지의 미고결 시료를 대상으로 투과도, p파속도, 전기비저항 측정을 수행하였다. 연구에 사용된 미고결 시료는 Hama#5($774{\mu}m$), #6($485{\mu}m$), #7($258{\mu}m$), #8($106{\mu}m$) 4가지와 Hama#6과 Hama#7을 1:1($371{\mu}m$)로 혼합하여 사용하였다. 실험에 사용된 장비는 가스하이드레이트를 인공적으로 생성시키기 위해 퇴적층을 모사할 수 있는 고압셀과 자료획득장비, 유체 주입장비, 온도 유지장비이다. 또한 투과도 측정에는 차압계, 전기비저항 측정에 RLC meter, p파속도 측정에 음파 송수신장비를 사용하여 각각의 물성을 측정하였다. 실험과정을 단계별로 요약하면 먼저 시료를 고압셀에 충진한 뒤 주입된 물의 양으로부터 공극률을 측정하고, 절대 투수계수를 측정하였다. 그 후, 메탄가스를 주입하여 퇴적층 내 수포화도(water saturation)를 잔류상태(irreducible saturation)로 유지시키고 메탄가스를 추가적으로 주입하여 원하는 압력까지 가압한 뒤 온도를 $1^{\circ}C$로 낮추었다. 가스하이드레이트의 생성은 급격한 압력강하로부터 알 수 있다. 최종적으로 가스하이트레이트가 함유된 퇴적층의 상대 투수계수를 측정하기 위해 메탄가스를 주입하였고 각각의 측정장비를 통해 전기비저항 및 p파 속도를 측정하였다.$V_g$, $V_h$, $V_w$, $V_ss$는 각각 가스의 부피, 하이드레이트의 부피, 물의 부피, 모래의 부피이다. 또한 수포화도, $S_w=\frac{V_w}{V_v}$이며 하이드레이트 포화도, $S_h=\frac{V_w}{V_v}$, 가스 포화도, $S_g=\frac{V_g}{V_v}$로 정의된다. 본 실험의 결과 투과도는 가스의 부피비, $\frac{V_g}{V}=nS_g$에 민감한 반응을 보였으며, 비저항은 공극수의 부피비, $\frac{V_w}{V}=nS_w$에 민감한 반응을 보였다. 또한 p파 속도는 고체의 부피비, $\frac{V_s+V_h}{V}=n(1-S_h)$에 민감한 반응을 보였다. 이러한 실험의 결과는 가스하이드레이트 개발, 생산 연구에 있어 기초 물성자료로 활용되는데 도움을 줄 것이다.

  • PDF

Physical-chemical Properties and Phosphorus Adsorption Characteristics of Soils in Baicheng, China (중국 길림성 백성지역 흑개토의 이화학성 및 인산 흡착 특성)

  • Jin, Sheng-Ai;Lee, Sang-Mo;Choi, Woo-Jung;Yoo, Sun-Ho
    • Applied Biological Chemistry
    • /
    • v.44 no.2
    • /
    • pp.92-96
    • /
    • 2001
  • Soil physical-chemical properties and phosphorous adsorption characteristics were investigated to obtain the informations of the appropriate fertilization and soil management in Baicheng region, China, where agricultural circumstances at present forces to consider the use of land for crop production. Soils were collected from one uncultivated and three cultivated lands on August 1993. Soil $_PH$ was very higher in uncultivated land than in cultivated land, their values were 10.2 and 7.4, respectively. Regardless of cultivation, soil organic matter contents were below 2%, and concentrations of available soil phosphorus expressed as Bray 1 P and Olson P were less than 10 mg P $kg^{-1}$, however, cation exchange capacity was higher than 20 cmol(+) $kg^{-1}$. For uncultivated soil, the values of exchangeable sodium percent and calcium saturation percent were higher than 100%. The major cation of soil saturation paste extracts was Na regardless of land use type. Based on electrical conductivity and sodium adsorption ratio of saturation paste extracts, uncultivated soil was classified as saline-sodic soil and cultivated soil was classified as sodic or normal soil. The maximum adsorption capacity of phosphorus calculated by Langmuir isotherm ranged from 406 to 521 mg P ,$kg^{-1}$. The constraints of soils in Baicheng regions for agricultural cops werw high salt concentration, unfavorable soil chemical composition such as low concentration of available phosphorous, and poor drainage due to soil dispersion by high Na concentration. Therefore, the soil in Baicheng region, need the application of phosphorus fertilizer to increase the soil fertility and the proper soil management to improve the soil physical property especially permeability and soil structure.

  • PDF

Characteristics of Saturation and Circulating Current Based on Winding and Iron Core Structure of Grid-connected Transformer in Energy Storage System (ESS 연계용 변압기의 결선방식 및 철심구조에 따른 순환전류와 포화특성에 관한 연구)

  • Tae, Dong-Hyun;Lee, Hu-Dong;Kim, Ji-Myung;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.39-48
    • /
    • 2020
  • Since the fire accident of ESS (energy storage system) occurred at Gochang KEPCO Power Testing Center in August 2017, 29 fire cases with significant property losses have occurred in Korea. Although the cause of fire accidents have not been identified precisely, it should be considered battery and PCS (power conditioning system) as well as unbalance issues in the distribution system. In particular, circulating currents in a neutral line of a grid-connected transformer, which can affect a magnetized current, may have a negative effect on the ESS with unintentional core saturation and surge voltages at the secondary side of the transformer. Therefore, this paper proposes the modeling of the distribution system, which was composed of a substation, grid-connected transformer, and customer loads using PSCAD/EMTDC S/W, to analyze the phenomena of circulating current and surge voltages of the transformer with unbalanced currents in the distribution system. This paper presents a countermeasure for a circulating current with the installation of NGR (neutral grounding resistor) in grid-connected transformer. From the simulation results, it is clear that exceeding the circulating current and surge voltage at the secondary side of the transformer can be one of the causes of fire accidents.

Magnetic Property Evolution of Co-22%Cr Alloy Thin Films with Self-Organized Nano Structure Formation (Co-22%Cr 합금박막의 자가정렬형 나노구조에 의한 자기적 물성)

  • Song, O-Seong;Lee, Yeong-Min
    • Korean Journal of Materials Research
    • /
    • v.11 no.12
    • /
    • pp.1042-1046
    • /
    • 2001
  • Co-22%Cr alloy films are promising for high-density perpendicular magnetic recording media with their perpendicular anisotropy and large coercivity of 3000 Oe. We observed that a self organized nano structure(SONS) of fine ferromagnetic Co-enriched phase and paramagnetic Cr-enriched phase appears inside the grain of Co-Cr magnetic alloy thin films at the elevated substrate temperature after do-sputtering. We prepared 1000 $\AA$-thick Co-22%Cr films on 2000 $\AA$- SiO$_2$/Si(100) substrates at the deposition rate of 100 $\AA$/min with substrate temperatures of 3$0^{\circ}C$, 10$0^{\circ}C$, 15$0^{\circ}C$, 20$0^{\circ}C$, 30$0^{\circ}C$, and 40$0^{\circ}C$, respectively. We employed a vibrating sample magnetometer(VSM) to measure the B-H loops showing the saturation magnetifation, coercivity, remanence in in- plane and out- of- plane modes. In- plane coercivity, perpendicular coercivity, and perpendicular remanence increased as substrate temperature increased, how-ever they decreased after 30$0^{\circ}C$ slowly. Transmission electron microscope (TEM) characterization revealed that the self organized nano structure (SONS) appears at the elevated substrate temperature, which forms fine Co-enriched phases inside a grain, then it eventually affect the perpendicular magnetic property. Our results imply that we may tune the perpendicular magnetic properties with SONS obtained at appropriate substrate temperature.

  • PDF

Geotechnical properties of gas hydrate bearing sediments (가스 하이드레이트 부존 퇴적토의 지반공학적 물성)

  • Kim, Hak-Sung;Cho, Gye-Chun;Lee, Joo-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.151-151
    • /
    • 2011
  • Large amounts of natural gas, mainly methane, in the form of hydrates are stored on continental margins. When gas hydrates are dissociated by any environmental trigger, generation of excess pore pressure due to released free gas may cause sediment deformation and weakening. Hence, damage on offshore structures or submarine landslide can occur by gas hydrate dissociation. Therefore, geotechnical stability of gas hydrate bearing sediments is in need to be securely assessed. However, geotechnical characteristics of gas hydrates bearing sediments including small-strain elastic moduli have been poorly identified. Synthesizing gas hydrate in natural seabed sediment specimen, which is mainly composed of silty-to-clayey soils, has been hardly attempted due to their low permeability. Moreover, it has been known that hydrate loci in pore spaces and heterogeneity of hydrate growth in specimen scale play a critical role in determining physical properties of hydrate bearing sediments. In the presented study, we synthesized gas hydrate containing sediments in an instrumented oedometric cell. Geotechnical and geophysical properties of gas hydrate bearing sediments including compressibility, small-strain elastic moduli, elastic wave, and electrical resistivity are determined by wave-based techniques during loading and unloading processes. Significant changes in volume change, elastic wave, and electrical resistivity have been observed during formation and dissociation of gas hydrate. Experimental results and analyses reveal that geotechnical properties of gas hydrates bearing sediments are highly governed by hydrate saturation, effective stress, void ratio, and soil types as well as morphological feature of hydrate formation in sediments.

  • PDF

Synthesis of Fe-Doped TiO2/α-Fe2O3 Core-Shell Nanowires Using Co-Electrospinning and Their Magnetic Property (복합 전기방사법을 이용한 Fe-doped TiO2/α-Fe2O3 이중구조 나노와이어의 합성 및 자성 특성)

  • Koo, Bon-Ryul;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.423-428
    • /
    • 2014
  • We synthesized Fe-doped $TiO_2/{\alpha}-Fe_2O_3$ core-shell nanowires(NWs) by means of a co-electrospinning method and demonstrated their magnetic properties. To investigate the structural, morphological, chemical, and magnetic properties of the samples, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy were used, as was a vibrating sample magnetometer. The morphology of the nanostructures obtained after calcination at $500^{\circ}C$ exhibited core/shell NWs consisting of $TiO_2$ in the core region and ${\alpha}-Fe_2O_3$ in the shell region. In addition, the XPS results confirmed the formation of Fe-doped $TiO_2$ by the doping effect of $Fe^{3+}$ ions into the $TiO_2$ lattice, which can affect the ferromagnetic properties in the core region. For comparison, pure ${\alpha}-Fe_2O_3$ NWs were also fabricated using an electrospinning method. With regard to the magnetic properties, the Fe-doped $TiO_2/{\alpha}-Fe_2O_3$ core-shell NWs exhibited improved saturation magnetization(Ms) of approximately ~2.96 emu/g, which is approximately 6.1 times larger than that of pure ${\alpha}-Fe_2O_3$ NWs. The performance enhancement can be explained by three main mechanisms: the doping effect of Fe ions into the $TiO_2$ lattice, the size effect of the $Fe_2O3_$ nanoparticles, and the structural effect of the core-shell nanostructures.

Comparison of Soft Magnetic Properties of Permalloy and Conetic Thin Films (퍼멀로이와 코네틱 박막의 연자성 특성 비교)

  • Choi, Jong-Gu;Hwang, Do-Guwn;Lee, Sang-Suk;Rhee, Jang-Roh
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.4
    • /
    • pp.142-146
    • /
    • 2009
  • The soft magnetic property for the Corning glass/Ta(5 nm)/[Conetic, Permalloy)/Ta(3 nm) prepared by the ion beam deposition sputtering was investigated. The coercivity and saturation magnetic field of conetic (NiFeCuMo) and permalloy (NiFe) layer with easy and hard direction along to the applying magnetic field during deposition was compared with each other. The surface resistance of conetic film with a thickness of 10 nm was 2 times lower than one of permalloy film. The coercivity and the magnetic susceptibility of conetic film decreased and increased 3 times to one of permalloy film, respectively. These results suggest that a highly sensitive GMR-SV or MTJ using conetic film can be possible to develop the bio-device.