Co-22%Cr 합금박막의 자가정렬형 나노구조에 의한 자기적 물성

Magnetic Property Evolution of Co-22%Cr Alloy Thin Films with Self-Organized Nano Structure Formation

  • 송오성 (서울시립대학교 재료공학과) ;
  • 이영민 (서울시립대학교 재료공학과)
  • Song, O-Seong (Dept.of Materials Sciences & Engineering, University of Seoul) ;
  • Lee, Yeong-Min (Dept.of Materials Sciences & Engineering, University of Seoul)
  • 발행 : 2001.12.01

초록

Co-22%Cr alloy films are promising for high-density perpendicular magnetic recording media with their perpendicular anisotropy and large coercivity of 3000 Oe. We observed that a self organized nano structure(SONS) of fine ferromagnetic Co-enriched phase and paramagnetic Cr-enriched phase appears inside the grain of Co-Cr magnetic alloy thin films at the elevated substrate temperature after do-sputtering. We prepared 1000 $\AA$-thick Co-22%Cr films on 2000 $\AA$- SiO$_2$/Si(100) substrates at the deposition rate of 100 $\AA$/min with substrate temperatures of 3$0^{\circ}C$, 10$0^{\circ}C$, 15$0^{\circ}C$, 20$0^{\circ}C$, 30$0^{\circ}C$, and 40$0^{\circ}C$, respectively. We employed a vibrating sample magnetometer(VSM) to measure the B-H loops showing the saturation magnetifation, coercivity, remanence in in- plane and out- of- plane modes. In- plane coercivity, perpendicular coercivity, and perpendicular remanence increased as substrate temperature increased, how-ever they decreased after 30$0^{\circ}C$ slowly. Transmission electron microscope (TEM) characterization revealed that the self organized nano structure (SONS) appears at the elevated substrate temperature, which forms fine Co-enriched phases inside a grain, then it eventually affect the perpendicular magnetic property. Our results imply that we may tune the perpendicular magnetic properties with SONS obtained at appropriate substrate temperature.

키워드

참고문헌

  1. P.C. Hariharan, J. Magn. Soc. Japan, 25, 1245 (2001)
  2. http://www.almaden.ibm.com/sst/
  3. S.K. Nair, R.H. New, 34. 1916 (1998)
  4. C.A. Loss, H.I. Smith, T.S. Schatternburg, M. Farhoud, M. Hwang, M. Walsh, M.C. Abraham, R.J. Ram, Microelectronic Engineering, 53, 67 (2000) https://doi.org/10.1016/S0167-9317(00)00267-7
  5. Vich Le Thanha, V. Yam, Y. Zheng and D. Bouchier, Thin Solid Films, 380, 2 (2000) https://doi.org/10.1016/S0040-6090(00)01459-0
  6. Katsuyuki Masuda and Yukichi Shigeta, Applied Surface Science, 175, 77 (2001) https://doi.org/10.1016/S0169-4332(01)00063-0
  7. C. Adelmann, E. Martinez Guerrero F. Chabuel, J. Simon, B. Bataillou, G. Mala, Le Si Dang, N.T. Pelekanos, B. Daudin, G. Feuillet and H. Mariette, Mater. Sci. Eng.(B), 82, 212 (2001) https://doi.org/10.1016/S0921-5107(00)00763-7
  8. H.H. Kang, L. Salamanca-Riba, M. Pinczolits, G. Springholz, V. Holy and G, Bauer, Mater. Sci. Eng.(B), 80, 104 (2001) https://doi.org/10.1016/S0921-5107(00)00623-1
  9. Y. Maeda, Koji Takei and O. J. Rogers, J. Magn. Magn. Mater., 134, 315 (1994)
  10. Y. Maeda, S. Hirano and M. Asahi, Jpn. J. Appl. Phys., 24, L951 (1985) https://doi.org/10.1143/JJAP.24.L951
  11. K. Kimoto, Y. Hirayama and M. Futamoto, J. Magn. Magn. Mater., 159, 401 (1996) https://doi.org/10.1016/0304-8853(96)00053-4
  12. Ohsung Song and Yasushi Maeda., Kor. J. Mater. Res., 9(4), 341 (1999)
  13. H. Kranenburg, C. Lodder, T. Popma, K. Takei, and Y. Maeda, J. Magn. Soc. Jap., 15(82), 33 (1991)
  14. K. Tanahashi, I. Tamai, Y. Takahashi, T. Kanbe, and Y. Hosoe, J. Magn. Magn.Mater., 193(1-3), 232 (1999) https://doi.org/10.1016/S0304-8853(98)00433-8
  15. D.J. Rogers, Y. Maeda, K. Takei, J. Magn. Soc. Jap., 18(51), 113 (1944)