• Title/Summary/Keyword: Satellite rainfall

Search Result 242, Processing Time 0.031 seconds

Flood Monitoring Using River Flow Forecasting Model with Special Reference to Luangwa River

  • Ngoma, Solomon
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2001.06a
    • /
    • pp.38-38
    • /
    • 2001
  • The rainfall estimates give sufficiently accurate information to map areas which have received the minimum rainfall necessary for outbreaks of pests such as locusts, thus cutting down the cost of searching for likely outbreak sites. At the other end of the scale, satellite rainfall estimates can be used to give timely warnings of changes in river levels and the likelihood of floods in large river catchments.(omitted)

  • PDF

Case study on the Accuracy Assessment of the rainrate from the Precipitation Radar of TRMM Satellite over Korean Peninsula

  • Chung, Hyo-Sang;Park, Hye-Sook;Noh, Yoo-Jeong
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.103-106
    • /
    • 1999
  • The Tropical Rainfall Measuring Mission(TRMM) is a United States-Japan project for rain measurement from space. The first spaceborne Precipitation Radar(PR) has been installed aboard the TRMM satellite. The ground based validation of the TRMM satellite observations was conducted by TRMM science team through a Global Validation Program(GVP) consisted of 10 or more ground validation sites throughout the tropics. However, TRMM radar should always be validated and assessed against reference data to be used in Korean Peninsula because the rainrates measured with satellite varies by time and space. We have analyzed errors in the comparison of rainrates measured with the TRMM/PR and the ground-based instrument i.e. Automatic Weather System(AWS) by means of statistical methods. Preliminary results show that the near surface rainrate of TRMM/PR are highly correlated with ground measurements especially for the very deep convective rain clouds, though the correlation is changed according to the type and amount of precipitating clouds. Results also show that TRMM/PR instrument is inclined to underestimate the rainrate on the whole over Korea than the AWS measurement for the cases of heavy rainfall.

  • PDF

Fresh water impact on chlorophyll a distribution at northeast coast of the Bay of Bengal analyzed through in-situ and satellite data

  • Mishra, R.K.;Senga, Y.;Nakata, K.
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.122-125
    • /
    • 2006
  • The distribution of phytoplankton pigments were studied bimonthly at four stations from the mouth of Mahanadi River at Paradip to the 36.7km off coast in Bay of Bengal during April 2001 to December 2002. Bottom depth was shallower than 40m in all stations. The pigment concentration of Chl-a was measured. It increased from surface to bottom in the water column. The water column integrated chlorophyll-a concentration (Chl-a) varied between 6.1 and $48.5mg{\cdot}m-^2$ with peaks during monsoon period (Aug & Oct). Spatial distribution of salinity depended strongly on freshwater runoff. The salinity was 5psu at river mouth and 25.15psu at offshore in monsoon period; however it was 30psu at the river mouth in summer. We found a linear relationship between the amount of river discharge and integrated Chl-a in coastal region from 2 years observations. Extending this result, we analyzed rainfall and coastal Chl-a using satellite data. The relationship between the river discharge and monthly accumulated rainfall estimated from TRMM and others data sources was analyzed in 2001 and 2002 using Giovanni infrastructure provided by NASA. The result depended on the specified area on TRMM images; the river delta area had sharper relationship than wider rain catchments area. Moreover, the relationship between monthly averaged Chl-a derived from SeaWiFS and monthly accumulated rainfall estimated from TRMM was analyzed from 1998 to 2005. It was clear that the broom in monsoon period was strongly controlled by rainfall on river delta.

  • PDF

Status of Rice Paddy Field and Weather Anomaly in the Spring of 2015 in DPRK

  • Hong, Suk Young;Park, Hye-Jin;Jang, Keunchang;Na, Sang-Il;Baek, Shin-Chul;Lee, Kyung-Do;Ahn, Joong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.361-371
    • /
    • 2015
  • To understand the impact of 2015 spring drought on crop production of DPRK (Democratic People's Republic of Korea), we analyzed satellite and weather data to produce 2015 spring outlook of rice paddy field and rice growth in relation to weather anomaly. We defined anomaly of 2015 for weather and NDVI in comparison to past 5 year-average data. Weather anomaly layers for rainfall and mean temperature were calculated based on 27 weather station data. Rainfall in late April, early May, and late May in 2015 was much lower than those in average years. NDVI values as an indicator of rice growth in early June of 2015 was much lower than in 2014 and the average years. RapidEye and Radarsat-2 images were used to monitor status of rice paddy irrigation and transplanting. Due to rainfall shortage from late April to May, rice paddy irrigation was not favorable and rice planting was not progressed in large portion of paddy fields until early June near Pyongyang. Satellite images taken in late June showed rice paddy fields which were not irrigated until early June were flooded, assuming that rice was transplanted after rainfall in June. Weather and NDVI anomaly data in regular basis and timely acquired satellite data can be useful for grasping the crop and land status of DPRK, which is in high demand.

A preliminary assessment of high-spatial-resolution satellite rainfall estimation from SAR Sentinel-1 over the central region of South Korea (한반도 중부지역에서의 SAR Sentinel-1 위성강우량 추정에 관한 예비평가)

  • Nguyen, Hoang Hai;Jung, Woosung;Lee, Dalgeun;Shin, Daeyun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.6
    • /
    • pp.393-404
    • /
    • 2022
  • Reliable terrestrial rainfall observations from satellites at finer spatial resolution are essential for urban hydrological and microscale agricultural demands. Although various traditional "top-down" approach-based satellite rainfall products were widely used, they are limited in spatial resolution. This study aims to assess the potential of a novel "bottom-up" approach for rainfall estimation, the parameterized SM2RAIN model, applied to the C-band SAR Sentinel-1 satellite data (SM2RAIN-S1), to generate high-spatial-resolution terrestrial rainfall estimates (0.01° grid/6-day) over Central South Korea. Its performance was evaluated for both spatial and temporal variability using the respective rainfall data from a conventional reanalysis product and rain gauge network for a 1-year period over two different sub-regions in Central South Korea-the mixed forest-dominated, middle sub-region and cropland-dominated, west coast sub-region. Evaluation results indicated that the SM2RAIN-S1 product can capture general rainfall patterns in Central South Korea, and hold potential for high-spatial-resolution rainfall measurement over the local scale with different land covers, while less biased rainfall estimates against rain gauge observations were provided. Moreover, the SM2RAIN-S1 rainfall product was better in mixed forests considering the Pearson's correlation coefficient (R = 0.69), implying the suitability of 6-day SM2RAIN-S1 data in capturing the temporal dynamics of soil moisture and rainfall in mixed forests. However, in terms of RMSE and Bias, better performance was obtained with the SM2RAIN-S1 rainfall product over croplands rather than mixed forests, indicating that larger errors induced by high evapotranspiration losses (especially in mixed forests) need to be included in further improvement of the SM2RAIN.

Application of Meteorological Drought Index using Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) Based on Global Satellite-Assisted Precipitation Products in Korea (위성기반 Climate Hazards Group InfraRed Precipitation with Station (CHIRPS)를 활용한 한반도 지역의 기상학적 가뭄지수 적용)

  • Mun, Young-Sik;Nam, Won-Ho;Jeon, Min-Gi;Kim, Taegon;Hong, Eun-Mi;Hayes, Michael J.;Tsegaye, Tadesse
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.2
    • /
    • pp.1-11
    • /
    • 2019
  • Remote sensing products have long been used to monitor and forecast natural disasters. Satellite-derived rainfall products are becoming more accurate as space and time resolution improve, and are widely used in areas where measurement is difficult because of the periodic accumulation of images in large areas. In the case of North Korea, there is a limit to the estimation of precipitation for unmeasured areas due to the limited accessibility and quality of statistical data. CHIRPS (Climate Hazards Group InfraRed Precipitation with Stations) is global satellite-derived rainfall data of 0.05 degree grid resolution. It has been available since 1981 from USAID (U.S. Agency for International Development), NASA (National Aeronautics and Space Administration), NOAA (National Oceanic and Atmospheric Administration). This study evaluates the applicability of CHIRPS rainfall products for South Korea and North Korea by comparing CHIRPS data with ground observation data, and analyzing temporal and spatial drought trends using the Standardized Precipitation Index (SPI), a meteorological drought index available through CHIRPS. The results indicate that the data set performed well in assessing drought years (1994, 2000, 2015 and 2017). Overall, this study concludes that CHIRPS is a valuable tool for using data to estimate precipitation and drought monitoring in Korea.

An Empircal Model of Effective Path Length for Rain Attenuation Prediction (강우감쇠 유효경로 길이 예측을 위한 경험 모델)

  • 이주환;최용석;박동철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.5
    • /
    • pp.813-821
    • /
    • 2000
  • The engineering of satellite communication systems at frequencies above 10GHz requires a method for estimating rain-caused outage probabilities on the earth-satellite path. A procedure for predicting a rain attenuation distribution from a point rainfall rate distribution is, therefore, needed. In order to predict rain attenuation on the satellite link, several prediction models such as ITU-R, Global, SAM, DAH model, have been developed and used at a particular propagation condition, they may not be appropriate to a propagation condition in Korean territory. In this paper, a new rain attenuation prediction method appropriate to a propagation condition in Korea is introduced. Based on the results from ETRI measurements, a new method has been derived for an empirical approach with an identification on the horizontal correction factor as in current ITU-R method, and the vertical correction factor has been suggested with decreasing power law as a function of rainfall rate. This proposed model uses the entire rainfall rate distribution as input to the model, while the ITU-R and DAH model approaches only use a single 0.01% annual rainfall rate and assume that the attenuation at other probability levels can be determined from that single point distribution. This new model was compared with several world-wide prediction models. Based on the analysis, we can easily know the importance of the model choice to predict rain attenuation for a particular location in the radio communication system design.

  • PDF

Study on the Link Analysis for Satellite Broadcasting Service Using Ka Band Transponders in the Korean Area

  • Yoon, Ki-Chang;Kim, Seung-Chul;Sohn, Won
    • Journal of Satellite, Information and Communications
    • /
    • v.3 no.2
    • /
    • pp.7-12
    • /
    • 2008
  • The study discussed the link analysis for the Ka band satellite broadcasting service in Korea with respect to the transmission schemes based on the DVB-S2 standard. To analyze the effect of the rain fading to the link budget, we estimated the rain attenuation from the measured rainfall intensity in Korea. We analyzed the link budget for the Ka band transponders of Koreasat-3, and DirecTV BSS-99W, and showed the possible link availability with the DVB-S2 transmission schemes for each transponder. Based on the link analysis of the available satellites with the Ka band transponders, we suggested the required EIRP for the satellite which will be employed for the Ka band satellite broadcasting service in Korea.

  • PDF

Analysis on the Changes of Remote Sensing Indices on Each Land Cover Before and After Heavy Rainfall Using Multi-temporal Sentinel-2 Satellite Imagery and Daily Precipitation Data (다중시기 Sentinel-2 위성영상과 일강수량 자료를 활용한 집중호우 전후의 토지피복별 원격탐사지수 변화 분석)

  • KIM, Kyoung-Seop;MOON, Gab-Su;CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.2
    • /
    • pp.70-82
    • /
    • 2020
  • Recently, a lot of damages have been caused by urban flooding, and heavy rainfall that temporarily occur are the main causes of these phenomenons. The damages caused by urban flooding are identified as the change in the water balance in urban areas. To indirectly identify it, this research analyzed the change in the remote sensing indices on each land cover before and after heavy rainfall by utilizing daily precipitation data and multi-temporal Sentinel-2 satellite imagery. Cases of heavy rain advisory and warning were selected based on the daily precipitation data. And statistical fluctuation were compared by acquiring Sentinel-2 satellite images during the corresponding period and producing them as NDVI, NDWI and NDMI images about each land cover with a radius of 1,000 m based on the Seoul Weather Station. As a result of analyzing the maximum value, minimum value, mean and fluctuation of the pixels that were calculated in each remote sensing index image, there was no significant changes in the remote sensing indices in urban areas before and after heavy rainfall.