References
- Chamaille-Jammes, S. and H. Fritz. 2009. Precipitation-NDVI relationships in eastern and southern African savannas vary along a precipitation gradient. International Journal of Remote Sensing 30(13):3409-3422. https://doi.org/10.1080/01431160802562206
- Choi, W.J., T.S. Jung, K.J. Kim, S.Y. Choi, J.W. Cho, C.J. Kwak, J.W. Heo, J.U. Jin, K.A. Seo and S.H. Ko. 2014. A development of major disaster response scenarios and standards by locally(I) -focused on urban flooding and drought-. National Disaster Management Research Institute(NDMI) Primary Research Report. p.15
- Environmental Geographic Information Service (EGIS). 2018. Land Cover Map. https://egis.me.go.kr/intro/land.do. (Accessed may 13, 2020).
- European Space Agency(ESA). 2020. MultiSpectral Instrument(MSI) Overview. https://earth.esa.int/web/sentinel/technical-guides/sentinel-2-msi/msi-instrument. (Accessed april 6, 2020).
- GEO University. 2020. Remote Sensing Satellite Data and Spectral Indices. https://www.geo.university/pages/spectral-indices-with-multispectral-satellite-data. (Accessed march 13. 2020).
- Han, W.S. and T.S. Park. 2014. Diagnosis and policy direction of urban flooding disaster prevention system. KRIHS Policy Brief. p.2
- Jang, J.C., Y.W. Yoon and K.A. Park. 2017. Development of R&E educational program using satellite image for science-gifted student -focused on land use classification around Siheung -si-. School Science Journal 11(1):98-112. https://doi.org/10.15737/SSJ.11.1.201702.98
- Jang, M.W., S.H. Yoo and J.Y. Choi. 2007. Analysis of spring drought using NOAA/AVHRR NDVI for North Korea. Journal of the Korean Society of Agricultural Engineers 49(6):21-33. https://doi.org/10.5389/KSAE.2007.49.6.021
- Jung, W.K., S.K. Lim and M.S. Kim. 1999. Changes of agricultural land use after flooding analyzed by Landsat-TM data. The Journal of the Korean Society of International Agriculture 11(2):155-160.
- Kawabata, A., K. Ichii and Y. Yamaguchi. 2001. Global monitoring of interannual changes in vegetation activities using NDVI and its relationships to temperature and precipitation. International Journal of Remote Sensing 22(7):1377-1382. https://doi.org/10.1080/01431160119381
- Kim, B.K., D.W. Jang, N. Zhang and D.M. Yang. 2011. The deduction of urban flood risk factor considering climate change. Crisisonomy 7(1):125-142.
- Kim, D.W., J.C. Park and D.H. Jang. 2017. Analysis of the possibility for drought detection of spring season using SPI and NDVI. Journal of the Association of Korean Geographers 6(2):165-174. https://doi.org/10.25202/JAKG.6.2.5
- Kim, E.S., B.R. Lee and J.H. Lim. 2019. Forest damage detection using daily normal vegetation index based on time series Landsat Images. Korean Journal of Remote Sensing 35(6):1133-1148. https://doi.org/10.7780/kjrs.2019.35.6.2.9
- Kim, I.H. 2016. Drone based construction of spatial image information and plan of GIS data gathering and utilizing. Real Estate Focus 95. p.35
- Kim, S.H., J. Heo, K.H. Yun and H.G. Sohn. 2007. Impervious surface estimation using Landsat-7 ETM+ image in Ansung area. Korean Journal of Remote Sensing 23(6):529-536.
- Kim, Y.R. and J.K. Jin. 2018. Diagnosis and improvement of water-cycle policy in Seoul. Seoul Institute Policy Research Report. p.2
- Korea Meteorological Administration(KMA). 2020. Historical Data. Ground Observation Data. https://www.weather.go.kr/weather/climate/past_cal.jsp. (Accessed march 13, 2020).
- Korean Statistical Information Service (KOSIS). 2019. Population status of urban areas. http://kosis.kr/statHtml/statHtml.do?orgId=315&tblId=TX_315_2009_H1001&vw_cd=MT_OTITLE&list_id=315_31502_008&scrId=&seqNo=&lang_mode=ko&obj_var_id=&itm_id=&conn_path=E1. (Accessed march 31, 2020).
- Lee, S.J., K.J. Kim, Y.H. Kim, J.W. Kim and Y.W. Lee. 2017. Development of FBI(Fire Burn Index) for Sentinel-2 images and an experiment for detection of burned areas in Korea. Journal of the Association of Korean Photo-Geographers 27(4):187-202. https://doi.org/10.35149/jakpg.2017.27.4.012
- Park, J.S., K.T. Kim, J.H. Lee and K.S. Lee. 2006. Applicability of multi-temporal MODIS images for drought assessment in South Korea. Journal of the Korean Association of Geographic Information Studies 9(4):176-192.
- Park, J.S., W.H. Lee and M.H. Jo. 2016. Improving accuracy of land cover classification in river basins using Landsat-8 OLI image, vegetation index, and water index. Journal of the Korean Association of Geographic Information Studies 19(2):98-106. https://doi.org/10.11108/kagis.2016.19.2.098
- Parmiggiani, F., G. Quarta, G.P. Marra and D. Conte. 2006. NDVI fluctuations from 1995 to 2006 in South Italy and North Africa: A search for a climate change indicator. Proceedings of SPIE-The International Society for Optical Engineering 6359.
- Rouse, J.W., R.H. Haas, J.A. Schell and D.W. Deering. 1974. Monitoring vegetation systems in the Great Plains with ERTS. 3rd Earth Resource Technology Satellite Symposium. Proceedings 1:48-62.
- Shin, H.J., M.J. Park, E.H. Hwang, H.S. Chae and S.J. Kim. 2015. A study of spring drought using Terra MODIS satellite image -for the Soyanggang dam watershed-. Journal of the Korean Association of Geographic Information Studies 18(4):145-157. https://doi.org/10.11108/kagis.2015.18.4.145
- Shin, S.C. and T.Y. An. 2004. Estimation of areal evapotranspiration using NDVI and temperature date. Journal of the Korean Association of Geographic Information Studies 7(3):79-89.
- Shin, S.C., S. Jeong, K.T. Kim, J.H. Kim and J.S. Park. 2006. Dought detection and estimation of water deficit using NDVI. Journal of the Korean Association of Geographic Information Studies 9(2):102-114.
- Tourre, Y.M., L. Jarlan, J-P. Lacaux, C.H. Rotela and M. Lafaye. 2008. Spatio-temporal variability of NDVI-precipitation over southernmost South America: possible linkages between climate signals and epidemics. Environmental Research Letters 3(4) 044008:1-9. https://doi.org/10.1088/1748-9326/3/4/044008
Cited by
- 다중시기 Landsat 위성영상으로부터 산출한 토양 수분 지수를 활용하여 지진 발생으로 인한 토양 액상화 모니터링에 관한 연구: 포항시를 사례로 vol.24, pp.1, 2020, https://doi.org/10.11108/kagis.2021.24.1.126