DOI QR코드

DOI QR Code

Analysis on the Changes of Remote Sensing Indices on Each Land Cover Before and After Heavy Rainfall Using Multi-temporal Sentinel-2 Satellite Imagery and Daily Precipitation Data

다중시기 Sentinel-2 위성영상과 일강수량 자료를 활용한 집중호우 전후의 토지피복별 원격탐사지수 변화 분석

  • 김경섭 ((주)지오씨엔아이 공간정보기술연구소) ;
  • 문갑수 ((주)지오씨엔아이 공간정보기술연구소) ;
  • 정윤재 ((주)지오씨엔아이 공간정보기술연구소)
  • Received : 2020.05.27
  • Accepted : 2020.06.05
  • Published : 2020.06.30

Abstract

Recently, a lot of damages have been caused by urban flooding, and heavy rainfall that temporarily occur are the main causes of these phenomenons. The damages caused by urban flooding are identified as the change in the water balance in urban areas. To indirectly identify it, this research analyzed the change in the remote sensing indices on each land cover before and after heavy rainfall by utilizing daily precipitation data and multi-temporal Sentinel-2 satellite imagery. Cases of heavy rain advisory and warning were selected based on the daily precipitation data. And statistical fluctuation were compared by acquiring Sentinel-2 satellite images during the corresponding period and producing them as NDVI, NDWI and NDMI images about each land cover with a radius of 1,000 m based on the Seoul Weather Station. As a result of analyzing the maximum value, minimum value, mean and fluctuation of the pixels that were calculated in each remote sensing index image, there was no significant changes in the remote sensing indices in urban areas before and after heavy rainfall.

최근 도시홍수에 의해 많은 피해가 발생하고 있으며, 단시간에 국지적으로 발생하는 집중호우가 1차 원인으로 꼽히고 있다. 도시홍수의 피해는 도시지역 내 물수지의 변화로 규명하고 있으며, 이를 간접적으로 파악하기 위해 일강수량 자료와 다중시기 Sentinel-2 위성영상을 활용해 집중호우 전후의 토지피복별 원격탐사지수 변화를 분석하였다. 일강수량 자료를 바탕으로 호우주의보 및 경보의 사례를 선정하였고, 해당 기간의 Sentinel-2 위성영상을 취득해 이를 기상청 서울관측소 기준 반경 1,000m 범위의 정규식생지수(NDVI), 정규수분지수(NDWI) 및 정규습윤지수(NDMI) 영상을 토지피복별로 제작하여 통계적 변화를 비교하였다. 각 영상을 구성하고 있는 픽셀의 최댓값, 최솟값, 평균 및 그 증감을 분석한 결과, 집중호우 전후 도시지역 원격탐사지수에 유의미한 변화가 발생한 것으로 보기는 힘들다고 판단하였다.

Keywords

References

  1. Chamaille-Jammes, S. and H. Fritz. 2009. Precipitation-NDVI relationships in eastern and southern African savannas vary along a precipitation gradient. International Journal of Remote Sensing 30(13):3409-3422. https://doi.org/10.1080/01431160802562206
  2. Choi, W.J., T.S. Jung, K.J. Kim, S.Y. Choi, J.W. Cho, C.J. Kwak, J.W. Heo, J.U. Jin, K.A. Seo and S.H. Ko. 2014. A development of major disaster response scenarios and standards by locally(I) -focused on urban flooding and drought-. National Disaster Management Research Institute(NDMI) Primary Research Report. p.15
  3. Environmental Geographic Information Service (EGIS). 2018. Land Cover Map. https://egis.me.go.kr/intro/land.do. (Accessed may 13, 2020).
  4. European Space Agency(ESA). 2020. MultiSpectral Instrument(MSI) Overview. https://earth.esa.int/web/sentinel/technical-guides/sentinel-2-msi/msi-instrument. (Accessed april 6, 2020).
  5. GEO University. 2020. Remote Sensing Satellite Data and Spectral Indices. https://www.geo.university/pages/spectral-indices-with-multispectral-satellite-data. (Accessed march 13. 2020).
  6. Han, W.S. and T.S. Park. 2014. Diagnosis and policy direction of urban flooding disaster prevention system. KRIHS Policy Brief. p.2
  7. Jang, J.C., Y.W. Yoon and K.A. Park. 2017. Development of R&E educational program using satellite image for science-gifted student -focused on land use classification around Siheung -si-. School Science Journal 11(1):98-112. https://doi.org/10.15737/SSJ.11.1.201702.98
  8. Jang, M.W., S.H. Yoo and J.Y. Choi. 2007. Analysis of spring drought using NOAA/AVHRR NDVI for North Korea. Journal of the Korean Society of Agricultural Engineers 49(6):21-33. https://doi.org/10.5389/KSAE.2007.49.6.021
  9. Jung, W.K., S.K. Lim and M.S. Kim. 1999. Changes of agricultural land use after flooding analyzed by Landsat-TM data. The Journal of the Korean Society of International Agriculture 11(2):155-160.
  10. Kawabata, A., K. Ichii and Y. Yamaguchi. 2001. Global monitoring of interannual changes in vegetation activities using NDVI and its relationships to temperature and precipitation. International Journal of Remote Sensing 22(7):1377-1382. https://doi.org/10.1080/01431160119381
  11. Kim, B.K., D.W. Jang, N. Zhang and D.M. Yang. 2011. The deduction of urban flood risk factor considering climate change. Crisisonomy 7(1):125-142.
  12. Kim, D.W., J.C. Park and D.H. Jang. 2017. Analysis of the possibility for drought detection of spring season using SPI and NDVI. Journal of the Association of Korean Geographers 6(2):165-174. https://doi.org/10.25202/JAKG.6.2.5
  13. Kim, E.S., B.R. Lee and J.H. Lim. 2019. Forest damage detection using daily normal vegetation index based on time series Landsat Images. Korean Journal of Remote Sensing 35(6):1133-1148. https://doi.org/10.7780/kjrs.2019.35.6.2.9
  14. Kim, I.H. 2016. Drone based construction of spatial image information and plan of GIS data gathering and utilizing. Real Estate Focus 95. p.35
  15. Kim, S.H., J. Heo, K.H. Yun and H.G. Sohn. 2007. Impervious surface estimation using Landsat-7 ETM+ image in Ansung area. Korean Journal of Remote Sensing 23(6):529-536.
  16. Kim, Y.R. and J.K. Jin. 2018. Diagnosis and improvement of water-cycle policy in Seoul. Seoul Institute Policy Research Report. p.2
  17. Korea Meteorological Administration(KMA). 2020. Historical Data. Ground Observation Data. https://www.weather.go.kr/weather/climate/past_cal.jsp. (Accessed march 13, 2020).
  18. Korean Statistical Information Service (KOSIS). 2019. Population status of urban areas. http://kosis.kr/statHtml/statHtml.do?orgId=315&tblId=TX_315_2009_H1001&vw_cd=MT_OTITLE&list_id=315_31502_008&scrId=&seqNo=&lang_mode=ko&obj_var_id=&itm_id=&conn_path=E1. (Accessed march 31, 2020).
  19. Lee, S.J., K.J. Kim, Y.H. Kim, J.W. Kim and Y.W. Lee. 2017. Development of FBI(Fire Burn Index) for Sentinel-2 images and an experiment for detection of burned areas in Korea. Journal of the Association of Korean Photo-Geographers 27(4):187-202. https://doi.org/10.35149/jakpg.2017.27.4.012
  20. Park, J.S., K.T. Kim, J.H. Lee and K.S. Lee. 2006. Applicability of multi-temporal MODIS images for drought assessment in South Korea. Journal of the Korean Association of Geographic Information Studies 9(4):176-192.
  21. Park, J.S., W.H. Lee and M.H. Jo. 2016. Improving accuracy of land cover classification in river basins using Landsat-8 OLI image, vegetation index, and water index. Journal of the Korean Association of Geographic Information Studies 19(2):98-106. https://doi.org/10.11108/kagis.2016.19.2.098
  22. Parmiggiani, F., G. Quarta, G.P. Marra and D. Conte. 2006. NDVI fluctuations from 1995 to 2006 in South Italy and North Africa: A search for a climate change indicator. Proceedings of SPIE-The International Society for Optical Engineering 6359.
  23. Rouse, J.W., R.H. Haas, J.A. Schell and D.W. Deering. 1974. Monitoring vegetation systems in the Great Plains with ERTS. 3rd Earth Resource Technology Satellite Symposium. Proceedings 1:48-62.
  24. Shin, H.J., M.J. Park, E.H. Hwang, H.S. Chae and S.J. Kim. 2015. A study of spring drought using Terra MODIS satellite image -for the Soyanggang dam watershed-. Journal of the Korean Association of Geographic Information Studies 18(4):145-157. https://doi.org/10.11108/kagis.2015.18.4.145
  25. Shin, S.C. and T.Y. An. 2004. Estimation of areal evapotranspiration using NDVI and temperature date. Journal of the Korean Association of Geographic Information Studies 7(3):79-89.
  26. Shin, S.C., S. Jeong, K.T. Kim, J.H. Kim and J.S. Park. 2006. Dought detection and estimation of water deficit using NDVI. Journal of the Korean Association of Geographic Information Studies 9(2):102-114.
  27. Tourre, Y.M., L. Jarlan, J-P. Lacaux, C.H. Rotela and M. Lafaye. 2008. Spatio-temporal variability of NDVI-precipitation over southernmost South America: possible linkages between climate signals and epidemics. Environmental Research Letters 3(4) 044008:1-9. https://doi.org/10.1088/1748-9326/3/4/044008

Cited by

  1. 다중시기 Landsat 위성영상으로부터 산출한 토양 수분 지수를 활용하여 지진 발생으로 인한 토양 액상화 모니터링에 관한 연구: 포항시를 사례로 vol.24, pp.1, 2020, https://doi.org/10.11108/kagis.2021.24.1.126