• Title/Summary/Keyword: Satellite based augmentation system (SBAS)

Search Result 70, Processing Time 0.029 seconds

Activities and Planning for KRS Coordinates Maintenance

  • Kang, Hee Won;Cho, Sunglyong;Kim, Heesung;Yun, Youngsun;Lee, ByungSeok
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.327-332
    • /
    • 2022
  • The Korea Augmentation Satellite System (KASS) is the Satellite-Based Augmentation System (SBAS) under development in Korea. KASS navigation service support navigation Safety of Life (SoL) service. KASS signal provides corrections to Global Positioning System (GPS) data received from KASS Reference Stations (KRS) and is broadcast form Geostationary Earth Orbiting (GEO) satellites to KASS users and is used by GPS/SBAS user equipment to improve the accuracy, availability, continuity and integrity of the navigation solution. Seven KRS's collect the satellite data and send them to the KASS Processing Stations (KPS) for the generation of the corrections and the monitoring the integrity. For performing its computation the KPS needs to know accurate and reliable KRS antennas coordinates. These coordinates are provided as configuration parameters to the KPS. This means that the reference frame in which the KPS work is the one represented by the set of coordinates provided as input. Therefore, the activity to maintain the accuracy of the KRS antenna coordinates is necessary, knowing that coordinates can evolve due to earth plates movements or earthquakes. In this paper, we analyzed the geodetic survey results for KRS antenna coordinates from Site Acceptance Test (SAT) #1 in December 2020 to August 2022. In the future, it is expected that these activities and planning for KRS coordinates maintenance will be produced and provided to KASS system operators for KPS configuration updates during the KASS lifetime of 15 years. Through these maintenance activities, it is expected that monitoring and analysis of unpredictable events such as earthquakes and seism will be possible in the future.

Analysis of KASS Flight Test Requirements using The EGNOS (EGNOS 사례를 활용한 KASS 비행시험 요구 사항 분석)

  • Son, Sung-Jin;Hong, Gyo-young;Hong, Woon Ki;Kim, Koon-Tack
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.579-584
    • /
    • 2017
  • SBAS is a satellite based navigation correction system that provides correction information and integrity information of GNSS signal through geostationary satellite based on analysis of GNSS signal in ground station. KASS, a Korean SBAS, is aiming at the APV-1 class SoL service in 2022. Sufficient ground and flight tests must be performed in advance to provide SoL services. However, since KASS, the Korean SBAS, has not yet been added in Korea, specific detailed evaluation items are not presented. EGNOS, which is expected to be the most compatible with KASS and is being serviced after its development, has already been evaluated. In this paper, we analyze the regulations applied to EGNOS construction and analyze the criteria of ground and flight test evaluation items required for flight testing, which is expected to be referenced to the flight inspection process in the future.

Geodetic Survey Campaigns and Maintenance Plan for KASS Reference Station Antenna Coordinates

  • Hwanho, Jeong;Hyunjin, Jang;Youngsun, Yun;ByungSeok, Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.83-89
    • /
    • 2023
  • The Korea Augmentation Satellite System (KASS) system is a Satellite Based Augmentation System (SBAS) under development to provide APV-I SBAS service in the Republic of Korea. The KASS ground segment generates correction and integrity information for GPS measurements of KASS users using the accurate positions of KASS Reference Station (KRS) antenna phase centers. For this reason, the accuracy of KRS reference points through geodetic survey campaigns is one of the important factors for providing the KASS service in compliance with the required navigation performance. In order to obtain accurate positions, two geodetic survey campaigns were performed at several reference points, such as Mark, Center of Mast at Ground Level (CMGL), and Center of Hole in Top Plate (CHTP), of each KRS site using three different survey methods, the Virtual Reference Station (VRS), Flächen Korrektur Parameter (FKP), and raw data post-processing methods. By comparing and analyzing the results, the computed coordinates of the reference points were verified and Antenna Phase Center (APC) positions were calculated using KRS Antenna Reference Point (ARP) data, and the first KASS Site Acceptance Test (SAT#1) was performed successfully using the verified APC coordinates. After the first site survey activities, the KASS operators should maintain the coordinates with the required performance such that the overall KASS navigation performance commitment is guaranteed during the lifetime of 15 years. Therefore, the maintenance plan for the KRS antenna coordinates should be developed before the commissioning of KASS operation planned after 2023. Therefore, this paper presents a geodetic survey method selected for the maintenance activities and provides the rationale for using this method.

Plan of KASS NOTAM Service Provision & System Architecture Through Analysis of Overseas Case (국외 사례분석을 통한 KASS NOTAM 서비스 제공 및 시스템 구성 방안)

  • Han, Ji-Ae;Lee, EunSung;Kim, Youn-Sil;Kang, Hee Won
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.96-104
    • /
    • 2018
  • NOTAM is an announcement that is distributed to flight attendants with status information related to aviation. ICAO, the International Civilian Aviation Organization, recommends that a NOTAM service be provided for the SBAS service in order to use the SBAS signal-based access procedure. To comply with ICAO recommendation, KASS must provide NOTAM service to all aircraft landing using SBAS signal in order to provide APV-I SoL service. Therefore, it is necessary to develop KASS NOTAM system to provide KASS NOTAM service. In this paper, we analyzed the regulations related to NOTAM in Korea and abroad and analyzed the present state of NOTAM service in Korea. Based on this, we propose a method of providing KASS NOTAM service. We analyzed the NOTAM system of WAAS in the US and EGNOS in Europe and analyzed the main functional requirements of the KASS NOTAM system.

Study on the Applicability of SBAS in Railway Application (위성기반 위치보정시스템의 철도 적용성 연구)

  • Shin, Kyung-Ho;Shin, Duck-Ho;Baek, Jong-Hyen;Lee, Jae-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2768-2774
    • /
    • 2011
  • In this paper, we investigate the methods to improve the position accuracy using DGNSS(Differential Global Navigation Satellite System). Then we configure the real-time DGNSS environment with use of GPS and MSAS as SBAS(Satellite Based Augmentation System) currently being in service by Japan. And we verify the improvement of position accuracy and the continuity of GPS correction data through the realtime DGNSS test in Joongang line, Kyungbu line, Honam line.

  • PDF

Korean Satellite Based Augmentations System (한국형 위성기반 항법보강시스템)

  • Park, Jae-U;Lee, Yong-Min
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.1
    • /
    • pp.48-53
    • /
    • 2006
  • A K-SBAS (Korean Satellite Based Augmentation System) is proposed as one of the space infrastructure. The proposed system considers the existed elements to the utmost for the most economical SBAS construction. As reference system the current DGPS (differential global positioning system) network is investigated. Space segment is investigated based on the COMS-1 (Communications, Oceanographic, and Meteorological Satellite-1). While bus system of COMS-1 can be kept to minimum change, the communication payload of needed, crucial parts such as software, man power can be easily secured through the DGPS network operation heritage.

  • PDF

Accuracy Comparison of GPT and SBAS Troposphere Models for GNSS Data Processing

  • Park, Kwan-Dong;Lee, Hae-Chang;Kim, Mi-So;Kim, Yeong-Guk;Seo, Seung Woo;Park, Junpyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.3
    • /
    • pp.183-188
    • /
    • 2018
  • The Global Navigation Satellite System (GNSS) signal gets delayed as it goes through the troposphere before reaching the GNSS antenna. Various tropospheric models are being used to correct the tropospheric delay. In this study, we compared effectiveness of two popular troposphere correction models: Global Pressure and Temperature (GPT) and Satellite-Based Augmentation System (SBAS). One-year data from a particular site was chosen as the test case. Tropospheric delays were computed using the GPT and SBAS models and compared with the International GNSS Service tropospheric product. The bias of SBAS model computations was 3.4 cm, which is four times lower than that of the GPT model. The cause of higher biases observed in the GPT model is the fact that one cannot get wet delays from the model. If SBAS-based wet delays are added to the hydrostatic delays computed using the GPT model, then the accuracy is similar to that of the full SBAS model. From this study, one can conclude that it is better to use the SBAS model than to use the GPT model in the standard code-pseudorange data processing.

Performance Estimation of Dual Frequency and Multi-Constellation Satellite Based Augmenation System for Korean Region (이중 주파수 및 다중 위성항법 광역보강시스템 한반도 지역 성능 예측)

  • Yun, Ho;Han, Deok-Hwa;Kee, Chang-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.4
    • /
    • pp.396-403
    • /
    • 2013
  • Recently, GNSS users can utilize various navigation satellite thanks to GPS modernization, renewal of GLONASS, and development of Galileo and Beidou. And availability performance of users is expected to be improved because these new navigation satellites transmit L5 signal as well as L1 signal, and users can directly estimate the ionospheric delays. In accordance with these changes existing Satellite Based Augmentation System (SBAS) which considers only GPS L1 signal is being developed to support dual frequency and multi-constellation GNSS users. This paper describes the main features of dual-frequency, multi-constellation SBAS algorithms and estimates the performance in Korean region by simulation.

A study of U.S. and European electronic hardware guidelines for aviation system : RTCA DO-254 and ECSS-Q-ST-60-02C (항공 시스템용 전자 하드웨어 개발을 위한 미국 및 유럽의 가이드라인 : RTCA DO-254와 ECSS-Q-ST-60-02C의 비교 분석 연구)

  • Kim, Sung Hoon;Kim, Hyun Woo;Chae, Hee Moon;Kim, Ki Du
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.10-16
    • /
    • 2022
  • Since aviation systems are developed as the complex form of software a hardware, the necessity to apply to relevant guidelines is increasing. It is however uncommon that international development guidelines regarding electronic hardware are applied to current domestic aviation systems. In this paper, we compare and analyze DO-254 and ECSS-Q-ST-60-02C, electronic hardware development guidelines with the case of KASS (Korea Augmentation Satellite System) Performance Suitability, based on the project of SBAS (Satellite Based Augmentation System) development and construction.

Analysis of MSAS Ionosphere Correction Messages and the Effect of Equatorial Anomaly (MSAS 전리층 보정정보 및 적도변이에 의한 영향 분석)

  • Jeong, Myeong-Sook;Kim, Jeong-Rae
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.2
    • /
    • pp.12-20
    • /
    • 2008
  • Japanese MSAS (Multi-functional Satellite Augmentation System) satellites have been transmitting GPS satellite orbit and ionosphere correction information since 2005. MSAS coverage includes Far East Asia, and it can improve the accuracy and integrity of GPS position solutions in Korea. This research analyzed the ionosphere correction information from the MSAS ionosphere correction data. The ionosphere delay data observed by a dual frequency receiver is compared with the MSAS ionosphere correction data. The variation of MSAS GIVE values are analyzed in connection with the equatorial anomaly and ionosphere scintillation.

  • PDF