• Title/Summary/Keyword: Satellite based augmentation system (SBAS)

Search Result 70, Processing Time 0.02 seconds

SBAS Non-Standard Data Transmission Method for Korea Augmentation Satellite System Applications (KASS 활용을 위한 위성기반 보강항법시스템(SBAS) 비규격 데이터 전송 방법 연구)

  • Park, Jae-ik;Lee, Eunsung;Heo, Moon-beom;Nam, Gi-wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1861-1867
    • /
    • 2016
  • Korea augmentation satellite system (KASS), which is a satellite-based augmentation system tailored for Korea, was launched for development in 2014. SBAS is a standard for aviation but it can also be utilized in non-aviation applications. The type and content of transmitted in SBAS data format are restricted. In order to utilize SBAS in fields that require the precision within centimeters, additional information has to be transmitted. It is important that data transmitted in nonstandard SBAS data not affect any operation of SBAS equipment. In this paper, we propose a non-standard SBAS data transmission method applicable to non-aviation applications that does not affect aviation SBAS receivers.

Accuracy Analysis of SBAS Satellite Orbit and Clock Corrections using IGS Precise Ephemeris (IGS 정밀궤도력을 이용한 SBAS 위성궤도 및 시계보정정보의 정확도 분석)

  • Jeong, Myeong-Sook;Kim, Jeong-Rae
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.2
    • /
    • pp.178-186
    • /
    • 2009
  • SBAS(Satellite Based Augmentation System) provides GNSS satellite orbit and clock corrections for positioning accuracy improvement of GNSS users. In this paper, the accuracy of SBAS satellite orbit and clock corrections were analyzed by comparing with the IGS(International GNSS Service) precise ephemeris. The GPS antenna phase center offsets and the P1-C1 bias are considered for the analysis. The correction data of the US WAAS and the Japanese MSAS were analyzed. The analysis results showed that the SBAS satellite orbit and clock corrections are highly correlated. The correction data accuracy depends on the SBAS ground network size and orbit trajectories.

  • PDF

Design of DGNSS Software RSIM's Data Receive Module for G-III GNSS Receiver in SBAS Reference Station (SBAS 기준국용 G-III 수신기 연동을 위한 DGNSS SW RSIM의 수신 모듈 설계)

  • Jang, Wonseok;Park, Sanghyun;Seo, Kiyeol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.297-300
    • /
    • 2016
  • The typical Differential Global Navigation Satellite System service of South Korea is the Ground Based Differential GNSS service. South Korea building the Satellite-Based Augmentation System for GNSS to expand the Differential GNSS service. The satellite-based differential GNSS serive is called the SBAS(Satellite Based Augmentation System). The SBAS reference station on ground should be installed to operate the SBAS service alike the ground based augmentation system. That SBAS reference station can be installed with ground based DGNSS reference station. To make the SBAS reference station combined with the ground based DGNSS reference station, DGNSS system should be connected to NovAtel's G-III receiver. In this paper, the DGNSS software reference station's software module architecture was changed and G-III interface module was designed to use the G-III receiver.

  • PDF

Technical Development Trends of Satellite Based Augmentation System (위성기반 포지셔닝 보정시스템(SBAS) 기술개발 동향)

  • Sin, C.S.;Kim, J.H.;Ahn, J.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.29 no.3
    • /
    • pp.74-85
    • /
    • 2014
  • 위성기반보정시스템(SBAS: Satellite Based Augmentation System)은 GPS(Global Positioning System) 항법위성 제공 신호에 각종 요인으로 인한 오차 등의 발생이 수반되므로 GPS 신호감시 및 제공 메시지 사용여부 등을 위한 무결성기능, 각종 오차 등을 차등적 보정에 의한 정확도 향상 기능, 항법신호 가용성 및 연속성을 위한 레인징 신호제공 기능 등을 통해 항공기 안전운항에 사용될 수 있도록 한 시스템이다. 본 시스템은 국제민간항공기구(ICAO: International Civilian Aviation Organization)가 국제표준으로 정해진 상태로 단계별로 정밀한 항법서비스를 제공한다. 현재 미국 WAAS(Wide Area Augmentation System), 유럽 EGNOS(European Geostationary Navigation Overlay System), 일본 MSAS (MTSAT Satellite Based Augmentation System)는 운용 중이고 우리나라도 한국형 SBAS 시스템을 개발키로 한 바, 본고에서 국내외 SBAS 시스템에 대해 개발동향을 살펴보고자 한다.

  • PDF

Conceptual Design of the RF Links for KASS Satellite Communication System (KASS 위성통신시스템 RF 링크 기본 설계)

  • You, Moonhee;Sin, Cheon Sig
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.12-17
    • /
    • 2016
  • ICAO (International Civil Aviation Organization) recommends the introduction of SBAS (Satellite Based Augmentation System) in 2025, which provides GNSS (Global Navigation Satellite System) correction data and the ranging signal via GEO (geostationary earth orbit) satellites to GNSS users. In this paper, we present the basic design results of the satellite communication system RF link for the Korean SBAS systems, KASS (Korea Augmentation Satellite System) which is going on the development & implementation. KASS RF link was designed in consideration of both the C-band and Ku-band uplinks to meet the international standard requirements for the SBAS system, and identified the minimum EIRP and G/T performance of the KASS uplink station for each frequency band. These analysis results for the RF link design are expected to be used for an effective design of the subsystem specifications for KASS satellite communication system.

Integration, Verification, Qualification Activities for KASS System (KASS 시스템 통합 및 검증 활동)

  • Hwanho Jeong;Minhyuk Son;ByungSeok Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.782-787
    • /
    • 2023
  • Korea augmentation satellite system (KASS) integration, verification, qualification (IVQ) activity is verification of requirements for KASS system and its sub-system that were performed based on the inspection, analysis, review of design, test (IART) method from factory acceptance test (FAT) to test readiness review (TRR) after critical design review (CDR) was closed. In the FAT phase, developed equipment was installed on the test platform and we were verified interfaces between sub-systems and coupling test with the kass control station (KCS). In the site aceeptance test (SAT) phase, on-site verification was conducted by installing equipment verified by FAT such as kass reference station (KRS), kass processing station (KPS), kass uplink station (KUS), KCS. However, considering the developed plan and status, SAT was divided into 3 phases and coupling test was performed. In the TRR phase, the KASS system verification was performed through FAT's test list and additional test list using the satellite based augmentation system (SBAS) broadcast signal from geostationary earth orbit (GEO) 1.

Conceptual Design of KASS Uplink Station (한국형 위성항법보강시스템(KASS) 위성통신국 기본 설계)

  • You, Moonhee;Sin, Cheon Sig
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.72-77
    • /
    • 2017
  • The Satellite Based Augmentation System (SBAS) broadcasts to users integrity and correction information for Global Navigation Satellite System (GNSS) such as GPS and GLONASS using geostationary orbit (GEO) satellites. In accordance with the recommendation of the International Civilian Aeronautical Organization (ICAO) to introduce SBAS until 2025, a Korean SBAS system development / construction project is underway with the Ministry of Land, Transport and Maritime Affairs. Korea Augmentation Satellite System (KASS) is a high precision GPS correction system which is composed of KASS Reference Station (KRS), KASS Processing Station (KPS), KASS Uplink Station (KUS), KASS Control Station (KCS) and GEO satellites. In this paper, we provided the conceptual design of the KASS uplink station, which is composed of the Signal Generator Section (SGS) and the Radio-Frequency Section (RFS), and interface between the KASS ground sector and the GEO satellite.

Development of maintenance concept and procedures for KASS (KASS 유지보수 정의 및 절차 개발)

  • Minhyuk Son;Youngsun Yun;ByungSeok Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.373-379
    • /
    • 2022
  • KASS (korea augmentation satellite system) is an SBAS (satellite based augmentation system) that must ensure the performance of aviation service in accordance with the International Civil Aviation Organization's SARPs (standards and recommended practices) Annex 10 - Aeronautical Telecommunications. In order to guarantee the target service performance, the operating system must be operated, maintained and managed stably, and a maintenance system must be established for this purpose. From the maintenance point of view, the KASS subsystems were developed to consist of replacement units, and the maintenance organization and procedures to manage those subsystems and units were defined. In addition, the maintenance task for each the replacement unit was developed to ensure the availability performance required for the successful KASS operation, and the developed tasks were verified to sufficiently cover the activities to maintain the previously defined replacement units. The maintenance tasks developed through this study will be continuously verified in the actual operation preparation process prior to the full-scale provision of aviation services in the end of 2023, and will be updated accordingly.

Considerations on Ionospheric Correction and Integrity Algorithm for Korean SBAS

  • Bang, Eugene;Lee, Jiyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.1
    • /
    • pp.17-23
    • /
    • 2014
  • Satellite Based Augmentation Systems (SBAS) provide ionospheric corrections at geographically five degree-spaced Ionospheric Grid Points (IGPs) and confidence bounds, called Grid Ionospheric Vertical Errors (GIVEs), on the error of those corrections. Since the ionosphere is one of the largest error sources which may threaten the safety of a single frequency Global Navigation Satellite System (GNSS) user, the ionospheric correction and integrity bound algorithm is essential for the development of SBAS. The current single frequency based SBAS, already deployed or being developed, implement the ionospheric correction and error bounding algorithm of the Wide Area Augmentation System (WAAS) developed for use in the United States. However, the ionospheric condition is different for each region and it could greatly degrade the performance of SBAS if its regional characteristics are not properly treated. Therefore, this paper discusses key factors that should be taken into consideration in the development of the ionospheric correction and integrity bound algorithm optimized for the Korean SBAS. The main elements of the conventional GIVE monitor algorithm are firstly reviewed. Then, this paper suggests several areas which should be investigated to improve the availability of the Korean SBAS by decreasing the GIVE value.

Development Status of Operation Concept and Procedures for KASS

  • Son, Minhyuk;Yun, Youngsun;Lee, ByungSeok
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.1
    • /
    • pp.51-58
    • /
    • 2022
  • Korea Augmentation Satellite System (KASS) is a Satellite Based Augmentation System (SBAS) system under development in South Korea and aims to provide air navigation services after 2023. In order to provide reliable service, detailed design for the operation of this system is required. This paper proposes a detailed operation-based designs based on mission, architecture, operation definition of the system. For the stable operation of the system, an operation organization was designed and operation activities were classified in consideration of the architecture and function of the system. Detailed operation procedures were designed according to this classification and operation procedures related to the command and configuration of subsystem were verified on the Integration, Verification and Qualification (IVQ) platform for integrated testing and verification. The proposed operation concepts and procedures will be continuously confirmed and verified during verification, qualification and service preparation, and will be updated event after official KASS service.