• Title/Summary/Keyword: Satellite Separation

Search Result 132, Processing Time 0.029 seconds

Performance evaluation on the separation device activated by shape memory alloy actuator (형상기억합금을 이용한 소형 위성용 분리장치의 성능평가)

  • Choi, Junwoo;Lee, Dongkyu;Hwang, Kukha;Lee, Minhyung;Kim, Byungkyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.635-640
    • /
    • 2015
  • In this paper, we report a non-explosive separation device for a small satellite which utilize a shape memory alloy actuator. Based on previous research, we try to increase the reliability of the proposed device by changing some components. It enables the proposed device to activate under high preload. Also, we confirm it generates low shock which is main advantage of non-explosive separation device. Finally, vibration test which mimics launching environment and thermal vacuum test which mimics space environment are carried out respectively. After each environment test, we confirm the proposed device is successfully activated. Conclusively, we develop a non-explosive separation device which can activate with low shock under high preload after shock and environment tests(vibration and thermal vacuum tests).

Korea Pathfinder Lunar Orbiter (KPLO) Operation: From Design to Initial Results

  • Moon-Jin Jeon;Young-Ho Cho;Eunhyeuk Kim;Dong-Gyu Kim;Young-Joo Song;SeungBum Hong;Jonghee Bae;Jun Bang;Jo Ryeong Yim;Dae-Kwan Kim
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.43-60
    • /
    • 2024
  • Korea Pathfinder Lunar Orbiter (KPLO) is South Korea's first space exploration mission, developed by the Korea Aerospace Research Institute. It aims to develop technologies for lunar exploration, explore lunar science, and test new technologies. KPLO was launched on August 5, 2022, by a Falcon-9 launch vehicle from cape canaveral space force station (CCSFS) in the United States and placed on a ballistic lunar transfer (BLT) trajectory. A total of four trajectory correction maneuvers were performed during the approximately 4.5-month trans-lunar cruise phase to reach the Moon. Starting with the first lunar orbit insertion (LOI) maneuver on December 16, the spacecraft performed a total of three maneuvers before arriving at the lunar mission orbit, at an altitude of 100 kilometers, on December 27, 2022. After entering lunar orbit, the commissioning phase validated the operation of the mission mode, in which the payload is oriented toward the center of the Moon. After completing about one month of commissioning, normal mission operations began, and each payload successfully performed its planned mission. All of the spacecraft operations that KPLO performs from launch to normal operations were designed through the system operations design process. This includes operations that are automatically initiated post-separation from the launch vehicle, as well as those in lunar transfer orbit and lunar mission orbit. Key operational procedures such as the spacecraft's initial checkout, trajectory correction maneuvers, LOI, and commissioning were developed during the early operation preparation phase. These procedures were executed effectively during both the early and normal operation phases. The successful execution of these operations confirms the robust verification of the system operation.

Analysis of Interference Effect Between Geostationary Orbit Link and Non-Geostationary Orbit Link (정지궤도 위성망과 비정지궤도 위성망간의 간섭영향 분석)

  • Kang, Chul-Gyu;Park, Cheol-Sun;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.3
    • /
    • pp.344-350
    • /
    • 2009
  • In this paper, interference effect given from non-geostationary orbit link into geostationary orbit link is analyzed by BER performance. To analyze the interference effect with the angle between satellites, the angular separation is changed from $1^{\circ}$ to $8^{\circ}$, and the number of the satellite is also changed from 1 to 4 for analyzing it. From the results, the interference effect into the geostationary orbit service from non-geostationary orbit link is more increased according to the angular separation that is decreased. Especially, the small angle gives more interference effects to the geostationary orbit link. Furthermore, more number of interfering satellites gives more interference effect to the geostationary orbit link. However, the angle between the interference orbit and geostationary orbit gives more effect to the system performance then the number of the interference orbit.

  • PDF

Analysis of Interference Effect of ESIM on FS System Considering the Antenna Pointing Error (안테나 포인팅 에러를 고려한 ESIM이 FS 시스템에 미치는 간섭 영향 분석)

  • Kang, Young-Houng;Oh, Dae-Sub
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.6
    • /
    • pp.503-510
    • /
    • 2016
  • In recent years, owing to the growing user demand for the two-way internet service based on the move global broadband communications, a new type of satellite terminal has developed, known as earth station in motion (ESIM). This service was required by Resolution 158 (WRC-15) to study on the coexistence with the co-primary fixed service (FS) in 27.5-29.5 GHz as a FSS uplink. In this paper, four scenarios was introduced to account for the antenna pointing error and the azimuth for an analysis on the sharing between ESIM and FS. From analysis results, the required separation distance between two systems should be about 32~52 km according to the elevation angles of $20^{\circ}{\sim}40^{\circ}$ using thresholds of 5% and 10% outage probability. Therefore, it is necessary to control the azimuth angle due to a moving terminal as well as the pointing error of ESIM to minimize the required separation distance and to protect the co-primary FS.

The Flame Color Analysis of Color Models for Fire Detection (화재검출을 위한 컬러모델의 화염색상 분석)

  • Lee, Hyun-Sul;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.3
    • /
    • pp.52-57
    • /
    • 2013
  • This paper describes the color comparison analysis of flame in each standard color model in order to propose the optimal color model for image processing based flame detection algorithm. Histogram intersection values were used to analyze the separation characteristics between color of flame and color of non-flame in each standard color model which are RGB, YCbCr, CIE Lab, HSV. Histogram intersection value in each color model and components is evaluated for objective comparison. The analyzed result shows that YCbCr color model is the most suitable for flame detection by average HI value of 0.0575. Among the 12 components of standard color models, each Cb, R, Cr component has respectively HI value of 0.0433, 0.0526, 0.0567 and they have shown the best flame separation characteristics.

Pyroshock and Vibration Isolation using SMA Mesh Washer Isolator (형상기억합금 메쉬 와셔 절연계의 파이로 충격 및 진동 절연 시험)

  • Youn, Se-Hyun;Jang, Young-Soon;Han, Jae-Hung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.307-313
    • /
    • 2009
  • In general, pyroshock is generated from the actuation of separation devices for several stage, fairing, and satellite separation in the flight of a launch vehicle. During these events, transient vibration phenomenon called pyroshock, which shows large acceleration in the high frequency range, occurs and it can result in the malfunction of electronic components which is equipped inside the launch vehicle or satellite. In this paper, mesh washer isolators made out of SMA were introduced for the isolation of pyroshock. One type of isolator primarily used pseudoelastic characteristics of SMA and the other type of isolator used shape memory effect of SMA. For the study of basic load-displacement relationship of each SMA isolator, compressive loading tests were performed and the results showed the capability of the isolator itself. Pyroshock isolation tests were followed and verified the outstanding isolation performance of isolator. In addition, random vibration tests were also performed and checked the dynamic characteristics of each SMA isolator.

Interference Effect Analysis of Geostationary Orbit Link from Non-Geostationary Orbit Link (정지궤도 위성망과 비정지궤도 위성망간의 간섭영향 분석)

  • Kang, Chul-Gyu;Joung, Seung-Hee;Choi, Young-Seok;OH, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.919-923
    • /
    • 2009
  • In this paper, interference effect given from non-geostationary orbit link into geostationary orbit link is analyzed by BER performance curve. To analyse the interference effect with the angle between satellites, the angular separation is changed from $1^{\circ}$ to $8^{\circ}$, and the number of the satellite is also changed from 1 to 4 for analyzing it. From the result under those research environments, the interference effect into the geostationary orbit service is more increased according to the angular separation that is decreased. Especially, the small angle gives more interference effects to the geostationary orbit link. Furthermore, more number of interfering satellites gives more interference effect to the geostationary orbit link.

  • PDF

A study on the frequency sharing among broadcasting satellite networks (방송위성망간 주파수 공유에 관한 연구)

  • 박주홍;성향숙
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2A
    • /
    • pp.174-180
    • /
    • 2004
  • The World Radiocommunication Conference in year of 2000 adopted new Plans as well as Lists for BSS and its feeder-link in the Regions 1 and 3, based on the new technical criteria such as small size of antenna and low satellite power. Since the new Plans and Lists were based on new technical criteria, ITU was requested to review the relevant regulatory procedures and sharing criteria of broadcasting satellite networks contained in Appendices 30 and 30A of Radio Regulations. Korean BSS network at 116$^{\circ}$E was chosen for the study and ITU S/W (MSPACEG) was used. We analyzed the interference effects from adjacent BSS networks to Korean BSS network using parameters of an antenna diameter and polarization of receiving earth station. The analysis shows that it is difficult to co-operate BSS networks both at 116$^{\circ}$E and 113$^{\circ}$E, however, it is possible to use small antenna (i.e. 45cm) in frequency sharing among BSS networks with 6$^{\circ}$ orbital separation.

Separation Device of Deployable SAR Antenna for satellite (위성용 전개형 SAR 안테나 구속분리장치 )

  • Junwoo, Choi;Bohyun, Hwang;Byungkyu, Kim;Dong-yeon, Kim;Hyun-guk, Kim
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.123-128
    • /
    • 2022
  • This paper proposes a non-explosive separation device for the deployable SAR antenna. This device utilises a Ni-Cr wire to restrain the antenna's belt mechanism, and joule-heating is used to minimise the impact of deployment. After the Ni-Cr wire has been cut, the device is deployed through the preload of the belt mechanism. Considering the design load(99g) and preload conditions, FEM analysis for AL7050 and Ti was performed. This analysis revealed that the amount of deformation for AL7050 was 0.256 mm with a margin of +0.09. In addition, by performing orbital thermal analysis, the temperature distribution for AL7050 in the worst cold case is confirmed as -50 to +2℃ and -10 to +90℃ in the worst hot case. This analysis confirmed that the separation device would remain stable even in the worst environment.