• Title/Summary/Keyword: Satellite Imagery Data

Search Result 554, Processing Time 0.026 seconds

A Study on Data Acquisition in the Invisible Zone of UAV through LTE Remote Control (LTE 원격관제를 통한 UAV의 비가시권 데이터 취득방안)

  • Jeong, HoHyun;Lee, Jaehee;Park, Seongjin
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.987-997
    • /
    • 2019
  • Recently the demand for drones is rapidly increasing, as developing Unmanned Aerial Vehicle (UAV) and growing interest in them. Compared to traditional satellite and aerial imagery, it can be used for various researches (environment, geographic information, ocean observation, and remote sensing) because it can be managed with low operating costs and effective data acquisition. However, there is a disadvantage in that only a small area is acquired compared to the satellite and an aircraft, which is a traditional remote sensing method, depending on the battery capacity of the UAV, and the distance limit between Ground Control System (GCS) and UAV. If remote control at long range is possible, the possibility of using UAV in the field of remote sensing can be increased. Therefore, there is a need for a communication network system capable of controlling regardless of the distance between the UAV and the GCS. The distance between UAV and GCS can be transmitted and received using simple radio devices (RF 2.4 GHz, 915 MHz, 433 MHz), which is limited to around 2 km. If the UAV can be managed simultaneously by improving the operating environment of the UAV using a Long-Term Evolution (LTE) communication network, it can make greater effects by converging with the existing industries. In this study, we performed the maximum straight-line distance 6.1 km, the test area 2.2 ㎢, and the total flight distance 41.75 km based on GCS through LTE communication. In addition, we analyzed the possibility of disconnected communication through the base station of LTE communication.

Analysis of Red Tide Movement in the South Sea of Gyeongnam Province Using the GOCI Images of COMS (천리안 위성영상을 이용한 경상남도 남해안해역 적조이동 패턴 분석)

  • Kim, Dong Kyoo;Kim, Mi Song;Yoo, Hwan Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.1
    • /
    • pp.65-71
    • /
    • 2015
  • Red Tide phenomenon which happens in the southern coast of Korea gives massive damage to the fishermen who run fish farms and thereby a lot of efforts to prevent damage are made from various angles. In particular, red tide monitoring with satellite imagery can make it possible to obtain the occurrence data of red tide throughout the whole areas of the sea, which helps provide important information for establishing the preventive plans of disasters. In this regard, this study selected the South Sea of Gyeongnam Province with a view to suggesting the monitoring results with regard to the spread and reduction of the Red Tide in the middle of the day by using the GOCI Images of COMS. With this intention, it selected the region in the South Sea of Gyeongnam Province. The study results of analysis on the GOCI image data for the years of 2013(Aug. 12) and 2014 (Sep. 11) are as follows: the pattern of the Red Tide in the region of the South Sea occurred in the southern sea area of Geoje-do in the morning. It gradually spread and showed a gradual decline after reaching the top at 1 PM. In addition, in terms of the tide movement in the middle of the day, Red Tide began in the southern sea area and moved to the west, and moved to the east again at noon. It is judged that additional study on many factors such as the characteristics of the future Red-tide organisms, tidal currents, amount of sunshine, and water temperature is needed, but it is estimated that Red Tide movement monitoring with GOCI images would provide very crucial information for predicting the spread and movement of the Red Tide to protect and manage the Red Tide disasters.

Rice Yield Estimation Using Sentinel-2 Satellite Imagery, Rainfall and Soil Data (Sentinel-2 위성영상과 강우 및 토양자료를 활용한 벼 수량 추정)

  • KIM, Kyoung-Seop;CHOUNG, Yun-Jae;JUN, Byong-Woon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.1
    • /
    • pp.133-149
    • /
    • 2022
  • Existing domestic studies on estimating rice yield were mainly implemented at the level of cities and counties in the entire nation using MODIS satellite images with low spatial resolution. Unlike previous studies, this study tried to estimate rice yield at the level of eup-myon-dong in Gimje-si, Jeollabuk-do using Sentinel-2 satellite images with medium spatial resolution, rainfall and soil data, and then to evaluate its accuracy. Five vegetation indices such as NDVI, LAI, EVI2, MCARI1 and MCARI2 derived from Sentinel-2 images of August 1, 2018 for Gimje-si, Jeollabuk-do, rainfall and paddy soil-type data were aggregated by the level of eup-myon-dong and then rice yield was estimated with gamma generalized linear model, an expanded variant of multi-variate regression analysis to solve the non-normality problem of dependent variable. In the rice yield model finally developed, EVI2, rainfall days in September, and saline soils ratio were used as significant independent variables. The coefficient of determination representing the model fit was 0.68 and the RMSE for showing the model accuracy was 62.29kg/10a. This model estimated the total rice production in Gimje-si in 2018 to be 96,914.6M/T, which was very close to 94,470.3M/T the actual amount specified in the Statistical Yearbook with an error of 0.46%. Also, the rice production per unit area of Gimje-si was amounted to 552kg/10a, which was almost consistent with 550kg/10a of the statistical data. This result is similar to that of the previous studies and it demonstrated that the rice yield can be estimated using Sentinel-2 satellite images at the level of cities and counties or smaller districts in Korea.

A Study on the Determination of Exterior Orientation of SPOT Imagery (SPOT 위성영상(衛星映像)의 외부표정요소(外部標定要素) 결정(決定)에 관한 연구(硏究))

  • Yeu, Bock Mo;Cho, Gi Sung;Kwon, Hyon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.77-85
    • /
    • 1990
  • The application of remote sensing in small scale mapping has recently been widened to various fields such as information analysis of landuse, environmental conservation and natural resources. SPOT imagery, in particular, offers data which can be processed for 3-dimensional point determination. This is made possible by its high resolution, appropriate swatch width/altitude ratio and stereo imaging capabilities. This study aims to develop a suitable polymonial and an algorithm in the determination of exterior orientation which is essential in the 3-dimensional point determination of SPOT imgery. An algorithm is presented in this study to determine the exterior orientation of a preprocessed level lB film of the satellite image. It was found that a polynominal of 15 parameters is the best fit polynominal for exterior orientation determination, where 1st order line function is used for positon ($X_o$, $Y_o$, $Z_o$) and 2nd order line function is used for orientation (${\kappa}_o$, ${\phi}_o$, ${\omega}_o$).

  • PDF

Characteristics of Greenup and Senescence for Evapotranspiration in Gyeongan Watershed Using Landsat Imagery (Landsat 인공위성 이미지를 이용한 경안천 유역 증발산의 생장기와 휴면기 분포 특성 분석)

  • Choi, Minha;Hwang, Kyotaek;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1B
    • /
    • pp.29-36
    • /
    • 2011
  • Evapotranspiration (ET) from the various surfaces needs to be understood because it is a crucial hydrological factor to grasp interaction between the land surface and the atmosphere. A traditional way of estimating it, which is calculating it empirically using lysimeter and pan evaporation observations, has a limitation that the measurements represent only point values. However, these measurements cannot describe ET because it is easily affected by outer circumstances. Thus, remote sensing technology was applied to estimate spatial distribution of ET. In this study, we estimated major components of energy balance method (i.e. net radiation flux, soil heat flux, sensible heat flux, and latent heat flux) and ET as a map using Mapping Evapo-Transpiration with Internalized Calibration (METRIC) satellite-based image processing model. This model was run using Landsat imagery of Gyeongan watershed in Korea on Feb 1, 2003 and Sep 13, 2006. Basic statistical analyses were also conducted. The estimated mean daily ETs had respectively 22% and 11% of errors with pan evaporation data acquired from the Suwon Weather Station. This result represented similar distribution compared with previous studies and confirmed that the METRIC algorithm had high reliability in the watershed. In addition, ET distribution of each land use type was separately examined. As a result, it was identified that vegetation density had dominant impacts on distribution of ET. Seasonally, ET in a growing season represented significantly higher than in a dormant season due to more active transpiration. The ET maps will be useful to analyze how ET behaves along with the circumstantial conditions; land cover classification, vegetation density, elevation, topography.

Present Status and Future Prospect of Satellite Image Uses in Water Resources Area (수자원분야의 위성영상 활용 현황과 전망)

  • Kim, Seongjoon;Lee, Yonggwan
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.1
    • /
    • pp.105-123
    • /
    • 2018
  • Currently, satellite images act as essential and important data in water resources, environment, and ecology as well as information of geographic information system. In this paper, we will investigate basic characteristics of satellite images, especially application examples in water resources. In recent years, researches on spatial and temporal characteristics of large-scale regions utilizing the advantages of satellite imagery have been actively conducted for fundamental hydrological components such as evapotranspiration, soil moisture and natural disasters such as drought, flood, and heavy snow. Furthermore, it is possible to analyze temporal and spatial characteristics such as vegetation characteristics, plant production, net primary production, turbidity of water bodies, chlorophyll concentration, and water quality by using various image information utilizing various sensor information of satellites. Korea is planning to launch a satellite for water resources and environment in the near future, so various researches are expected to be activated on this field.

A Comparative Study on Mashup Performance of Large Amounts of Spatial Data and Real-time Data using Various Map Platforms (다양한 맵 플랫폼을 이용한 대용량 동적정보와 공간정보의 매쉬업 성능 비교 연구)

  • Kang, Jin-Won;Kim, Min-Soo
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.2
    • /
    • pp.49-60
    • /
    • 2017
  • Recently, the use of mashup that integrates real-time data with spatial data such as tiled map and satellite imagery has been increased significantly. As the use of mashup has been extended to various fields of O2O, LBS, Smart City, and Autonomous Driving, the performance of mashup has become more important. Therefore, this study aims to compare and analyze the performance of various map platforms, when large amounts of real-time data are integrated with spatial data. Specifically, we compare the performance of most popular map platforms available in Korea, such as Google Maps, OpenStreetMap, Daum Map, Naver Map, olleh Map, and VWorld. We also compare the performance using most common web browsers of Chrome, Firefox and Internet Explorer. In the performance analysis, we measured and compared the initialization time of basic map and the mashup time of real-time data for the above map platforms. From analysis results, we could find that Google Maps, OpenStreetMap, VWorld, and olleh Map platforms showed a better performance than the others.

A STUDY ON THE GENERATION OF EO STANDARD IMAGE PRODUCTS: SPOT

  • JUNG HYUNG-SUP;KANG MYUNG-HO;LEE YONG-WOONG;LEE HO-NAM;WON JOONG-SUN
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.216-219
    • /
    • 2004
  • In this study, the concept and techniques to generate the level lA, lB and 2A image products have been reviewed. In particular, radiometric and geometric corrections and bands registration used to generate level lA, lB and 2A products have been focused in this study. Radiometric correction is performed to take into account radiometric gain and offset calculated by compensating the detector response non-uniformity. And, in order to compensate satellite altitude, attitude, skew effects, earth rotation and earth curvature, some geometric parameters for geometric corrections are computed and applied. Bands registration process using the matching function between a geometry, which is called 'reference geometry', and another one which is corresponds to the image to be registered is applied to images in case of multi-spectral imaging mode. In order to generate level-lA image products, a simple radiometric processing is applied to a level-0 image. Level-lB image has the same radiometry correction as a level-lA image, but is also issued from some geometric corrections in order to compensate skew effects, Earth rotation effects and spectral misregistration. Level-2A image is generated using some geo-referencing parameters computed by ephemeris data, orbit attitudes and sensor angles. Level lA image is tested by visual analysis. The difference between distances calculated level 1 B image and distances of real coordinate is tested. Level 2A image is tested Using checking points.

  • PDF

Forecast of Land use Change for Efficient Development of Urban-Agricultural city (도농도시의 효율적 개발을 위한 토지이용변화예측)

  • Kim, Se-Kun;Han, Seung-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.73-79
    • /
    • 2012
  • This study attempts to analyze changes in land use patterns in a compound urban and agricultural city Kimje-si, using LANDSAT TM imagery and to forecast future changes accordingly. As a new approach to supervised classification, HSB(Hue, Saturation, Brightness)-transformed images were used to select training zones, and in doing so classification accuracy increased by more than 5 percent. Land use changes were forecasted by using a cellular automaton algorithm developed by applying Markov Chain techniques, and by taking into account classification results and GIS data, such as population of the pertinent region by area, DEMs, road networks, water systems. Upon comparing the results of the forecast of the land use changes, it appears that geographical features had the greatest influence on the changes. Moreover, a forecast of post-2030 land use change patterns demonstrates that 21.67 percent of mountain lands in Kimje-si is likely to be farmland, and 13.11 percent is likely to become city areas. The major changes are likely to occur in small mountain lands located in the heart of the city. Based on the study result, it seems certain that forecasting future land use changes can help plan land use in a compound urban and agricultural city to procure food resources.

Remote Sensing of Surface Films as a Tool for the Study of Oceanic Dynamic Processes

  • Mitnik, Leonid;Dubina, Vyacheslav;Konstantinov, Oleg;Fischenko, Vitaly;Darkin, Denis
    • Ocean and Polar Research
    • /
    • v.31 no.1
    • /
    • pp.111-119
    • /
    • 2009
  • Biogenic surface films, which are often present in coastal areas, may enhance the signatures of hydrodynamic processes in microwave, optical, and infrared imagery. We analyzed ERS-1/2 Synthetic Aperture Radar (SAR) and Envisat Advanced Synthetic Aperture Radar (ASAR) images taken over the Japan/East Sea (JES). We focused on the appearance of the contrast SAR signatures, particularly the dark features of different scales caused by various oceanic and atmospheric phenomena. Spiral eddies of different scales were detected through surface film patterns both near the coast and in the open regions of the JES in warm and cold seasons. During field experiments carried out at the Pacific Oceanological Institute (POI) Marine Station 'Cape Shults' in Peter the Great Bay, the sea surface roughness characteristics were measured during the day and night using a developed polarization spectrophotometer and various digital cameras and systems of floats. The velocity of natural and artificial slicks was estimated using video and ADCP time series of tracers deployed on the sea surface. The slopes of gravity-capillary wave power spectra varied between .4 and .5. Surface currents in the natural and artificial slicks increased with the distance from the coast, varying between 4 and 40 cm/s. The contrast of biogenic and anthropogenic slicks detected on vertical and horizontal polarization images against the background varied over a wide range. SAR images and ancillary satellite and field data were processed and analyzed using specialized GIS for marine coastal areas.