DOI QR코드

DOI QR Code

Rice Yield Estimation Using Sentinel-2 Satellite Imagery, Rainfall and Soil Data

Sentinel-2 위성영상과 강우 및 토양자료를 활용한 벼 수량 추정

  • 김경섭 ((주)지오씨엔아이 공간정보기술연구소) ;
  • 정윤재 ((주)지오씨엔아이 공간정보기술연구소) ;
  • 전병운 (경북대학교 지리학과)
  • Received : 2022.03.08
  • Accepted : 2022.03.22
  • Published : 2022.03.31

Abstract

Existing domestic studies on estimating rice yield were mainly implemented at the level of cities and counties in the entire nation using MODIS satellite images with low spatial resolution. Unlike previous studies, this study tried to estimate rice yield at the level of eup-myon-dong in Gimje-si, Jeollabuk-do using Sentinel-2 satellite images with medium spatial resolution, rainfall and soil data, and then to evaluate its accuracy. Five vegetation indices such as NDVI, LAI, EVI2, MCARI1 and MCARI2 derived from Sentinel-2 images of August 1, 2018 for Gimje-si, Jeollabuk-do, rainfall and paddy soil-type data were aggregated by the level of eup-myon-dong and then rice yield was estimated with gamma generalized linear model, an expanded variant of multi-variate regression analysis to solve the non-normality problem of dependent variable. In the rice yield model finally developed, EVI2, rainfall days in September, and saline soils ratio were used as significant independent variables. The coefficient of determination representing the model fit was 0.68 and the RMSE for showing the model accuracy was 62.29kg/10a. This model estimated the total rice production in Gimje-si in 2018 to be 96,914.6M/T, which was very close to 94,470.3M/T the actual amount specified in the Statistical Yearbook with an error of 0.46%. Also, the rice production per unit area of Gimje-si was amounted to 552kg/10a, which was almost consistent with 550kg/10a of the statistical data. This result is similar to that of the previous studies and it demonstrated that the rice yield can be estimated using Sentinel-2 satellite images at the level of cities and counties or smaller districts in Korea.

벼 수량 추정에 대한 기존의 국내 연구는 주로 저해상도인 MODIS 위성영상을 사용하여 우리나라 전역을 대상으로 시군 단위에서 수행되었다. 기존 연구와 달리, 본 연구는 전북 김제시를 사례로 중해상도인 Sentinel-2 위성영상과 강우 및 토양자료를 활용하여 읍면동 단위에서 벼 수량을 추정하고 그 정확성을 평가하였다. 전북 김제시를 대상으로 2018년 8월 1일에 촬영된 Sentinel-2 영상으로부터 산출된 NDVI, LAI, EVI2, MCARI1, MCARI2의 다섯 가지 식생지수와 강우량 및 논 토양 유형 자료를 읍면동별로 집계하고 종속변수의 비정규성 문제를 해결하기 위해 다중회귀분석을 확장한 감마 일반화 선형모형으로 벼 수량을 추정하였다. 벼 수량 추정 모형에서 EVI2, 9월 강우일수, 염해답 비율이 유의한 독립변수로 선정되었다. 모형의 적합도를 나타내는 결정계수는 0.68이었고, 모형의 정확성을 나타내는 RMSE는 62.29kg/10a였다. 이 모형으로 2018년 김제시 전역의 쌀 생산량을 추정한 결과는 96,914.6M/T으로 통계연보의 94,470.3M/T과 비교해 0.46%의 오차를 보여 매우 근접한 결과가 도출되었다. 또한, 김제시의 단위면적당 쌀 생산량은 552kg/10a로 도출되어 통계자료의 550kg/10a와 거의 일치하였다. 이러한 결과는 기존 연구들과 유사한 결과로 국내에서 시군 이하 단위에서 Sentinel-2 위성영상을 활용하여 벼 수량을 추정하는 것이 가능하다는 것을 입증하였다.

Keywords

Acknowledgement

본 논문은 주저자의 석사학위논문의 일부를 수정·보완한 것이며, 농촌진흥청 연구사업(과제번호: PJ0162342022)의 지원에 의해 이루어진 것임.

References

  1. Ali, A.M., I.Y. Savin, A. Poddubskiy, M. Abouelghar, N. Saleh, K. Adutaleb, M. ElShirbeny and P. Dokukin. 2020. Integrated method for rice cultivation monitoring using Sentinel-2 data and leaf area index. The Egyptian Journal of Remote Sensing and Space Sciences 24(3):431-441.
  2. Cao, J., Z. Zhang, F. Tao, L. Zhang, Y. Luo, J. Zhang, J. Han and J. Xie. 2021. Integrating multi-source data for rice yield prediction across China using machine learning and deep learning approaches. Agricultural and Forest Meteorology 297:108275. https://doi.org/10.1016/j.agrformet.2020.108275
  3. Cho, K.J. and Y.I. Kim. 2019. Simulation of Sentinel-2 product using airborne hyperspectral image and analysis of TOA and BOA reflectance for evaluation of Sen2Cor atmosphere correction: focused on agricultural land. Korean Journal of Remote Sensing 35(2):251-263. https://doi.org/10.7780/KJRS.2019.35.2.5
  4. ESA(European Space Agency). Resolution and Swath. http://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2/instrument-payload/resolution-and-swath.(Accessed September 22, 2021).
  5. Franch, B., A.S. Bautista, D. Fita, C. Rubio, D. Tarrazo-Serrano, A. Sanchez, S. Skakun, E. Vermote, I. Becker-Reshef and A. Uris. 2021. Within-field rice yield estimation based on Sentinel-2 satellite data. Remote Sensing 13(20):4095. https://doi.org/10.3390/rs13204095
  6. Haboudane, D., J.R. Miller, E. Pattey, P.J. Zarco-Tejada and I.B. Strachan. 2004. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sensing of Environment 90(3):337-352. https://doi.org/10.1016/j.rse.2003.12.013
  7. Hong, S.Y., J.N. Hur, J.B. Ahn, J.M.. Lee, B.K. Min, C.K. Lee, Y.H. Kim, K.D. Lee, S.H. Kim, G.Y. Kim and K.M. Shim. 2012. Estimating rice yield using MODIS NDVI and meteorological data in Korea. Korean Journal of Remote Sensing 28(5): 509-520. https://doi.org/10.7780/KJRS.2012.28.5.4
  8. Hong, S.Y., S.I. Na, K.D. Lee, Y.S. Kim and S.C. Baek. 2015. A study on estimating rice yield in DPRK using MODIS NDVI and rainfall data. Korean Journal of Remote Sensing 31(5):441-448. https://doi.org/10.7780/KJRS.2015.31.5.8
  9. Hyun, B.K., Y.K. Sonn, S.Y. Hong and K.T. Kim. 2019. Creation, classification and explanation of soil. In: Rural Development Administration(ed.) Crop soil management technology. Rural Development Administration, Jeonju, pp.8-41.
  10. Jang, S.E., A.S. Suh, P.G. Kim and J.I. Yun. 2000. Analysis of spectral reflectance characteristic change during growing status of rice plants using spectroradiometer. Journal of the Korean Association of Geographic Information Studies 3(3):12-19.
  11. Jensen, J.R. 2016. Introductory Digital Image Processing: A Remote Sensing Perspective 4th ed. (Im, J.H., H.G. Sohn, S.Y. Park, D.J. Kim, J.W. Choi, J.Y. Lee and C.J. Kim, Trans.). Sigma Press, Seoul, pp.327
  12. Ju, S., H. Lim, J.W. Ma, S. Kim, K. Lee, S. Zhao and J. Heo. 2021. Optimal county-level crop yield prediction using MODIS-based variables and weather data: a comparative study on machine learning models. Agricultural and Forest Meteorology 307: 108530. https://doi.org/10.1016/j.agrformet.2021.108530
  13. Kim, J.H., C.K. Lee, W.G.. Sang, P. Shin, H.S. Cho and M.C. Seo. 2017. Introduction to empirical approach to estimate rice yield and comparison with remote sensing approach. Korean Journal of Remote Sensing 33(5-2):733-740. https://doi.org/10.7780/KJRS.2017.33.5.2.12
  14. Kim, K.S., G.S. Moon and Y.J. Choung. 2020. Analysis on changes of remote sensing indices on each land cover before and after heavy rainfall using multi-temporal Sentinel-2 satellite imagery and daily precipitation data. Journal of the Korean Association of Geographic Information Studies 23(2):70-82. https://doi.org/10.11108/KAGIS.2020.23.2.070
  15. Kim, M.H., C.K. Lee, H.K. Park, J.E. Lee, B.C. Koo and J.C. Shin. 2008. A study on rice growth and yield monitoring using medium resolution Landsat imagery. Korean Journal of Crop Science 53(4): 388-393.
  16. KOSTAT(Statistics Korea). 2011. Development of yield estimation method for major crops using remote sensing techniques.
  17. KOSTAT(Statistics Korea). 2020. Paddy rice production by city and county(fine grain, 92.9%). Crop production survey.
  18. Lee, I.H. 2016. EasyFlow Regression Analysis. Hannarae. pp.459.
  19. Lee, H.Y. and S.C. Noh. 2013. Advanced statistical analysis -theory and practice-2nd ed. Moonwoosa.
  20. Lee, J.B., J. Heo and H.G. Sohn. 2008. Study on correlation between timber age, image bands and vegetation indices for timber age estimation using Landsat TM image. Korean Journal of Remote Sensing 24(6): 583-590. https://doi.org/10.7780/KJRS.2008.24.6.583
  21. Lee, K.D., H.Y. An, C.W. Park, K.H. So, S.I. Na and S.Y. Jang. 2019. Estimation of rice grain yield distribution using UAV imagery. Journal of the Korean Society of Agricultural Engineers 61(4):1-10. https://doi.org/10.5389/KSAE.2019.61.4.001
  22. Lee, K.D., C.W. Park, S.I. Na, M.P. Jung and J.H. Kim. 2017. Monitoring on crop condition using remote sensing and model. Korean Journal of Remote Sensing 33(5-2):617-620. https://doi.org/10.7780/KJRS.2017.33.5.2.1
  23. Ma, J.W., K.D. Lee, K.Y. Choi and J. Heo. 2017. Rice yield estimation of South Korea from year 2003-2016 using Stacked Sparse AutoEncoder. 2017. Korean Journal of Remote Sensing 33(5-2):631-640. https://doi.org/10.7780/KJRS.2017.33.5.2.3
  24. Ma, J.W., C.H. Nguyen, K.D. Lee and J. Heo. 2016. Convolutional networks for rice yield estimation using MODIS and weather data: a case study for South Korea. 2016. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography 34(5):525-534. https://doi.org/10.7848/KSGPC.2016.34.5.525
  25. Moon, H.G., T.Y. Choi, D.I. Kang and J.G. Cha. 2018. Study on the estimation of leaf area index(LAI) of using UAV vegetation index and tree height data. Journal of the Korean Association of Geographic Information Studies 21(4):158-174. https://doi.org/10.11108/KAGIS.2018.21.4.158
  26. Mosleh, M.K., Q.K. Hassan and E.H. Chowdhury. 2015. Application of remote sensors in mapping rice area and forecasting its production: A review. Sensors 15(1):769-791. https://doi.org/10.3390/s150100769
  27. Na, S.I., S.Y. Hong, H.Y. Ahn, C.W. Park, K.H. So and K.D. Lee. 2021. Detrending crop yield data for improving MODIS NDVI and meteorological data based rice yield estimation model. Korean Journal of Remote Sensing 37(2):199-209 . https://doi.org/10.7780/KJRS.2021.37.2.2
  28. Na, S.I., S.Y. Hong, Y.H. Kim, K.D. Lee and S.Y. Jang. 2013. Prediction of rice yield in Korea using paddy rice NPP index -application of MODIS data and CASA model-. Korean Journal of Remote Sensing 29(5):461-476. https://doi.org/10.7780/KJRS.2013.29.5.2
  29. Nazir, A., S. Ullah, Z.A. Saqib, A. Abbas, A. Ali, M.S. Iqbal, K. Hussain, M. Shakir and M. Shah. 2021. Estimation and forecasting of rice yield using phenology-based algorithm and linear regression model on Sentinel-II satellite data. Agriculture 11(10):1026. https://doi.org/10.3390/agriculture11101026
  30. Noureldin, N.A., M.A. Aboelghar, H.S. Saudy and A.M. Ali. 2013. Rice yield forecasting models using satellite imagery in Egypt. The Egyptian Journal of Remote Sensing and Space Sciences 16(1):125-131. https://doi.org/10.1016/j.ejrs.2013.04.005
  31. Nuarsa, I.W., F. Nishio and C. Hongo. 2012. Rice yield estimation using Landsat ETM+ data and field observation. Journal of Agricultural Science 4(3):45-56.
  32. Prada, M., C. Cabo, R. Hernandez-Clemente, A. Hornero, J. Majada and C. Martinez-Alonso. 2020. Assessing canopy responses to thinnings for sweet chestnut coppice with time-series vegetation indices derived from Landsat-8 and Sentinel-2 imagery. Remote Sensing 12(18):3068. https://doi.org/10.3390/rs12183068
  33. Sarma, A.A.L.N., T.V.L. Kumar and K. Koteswararao. 2008. Development of an agroclimatic model for the estimation of rice yield. The Journal of Indian Geophysical Uniton 12(2):89-96.
  34. Son, M.B., J.H. Chung, Y.G. Lee and S.J., Kim. 2021. A comparative analysis of vegetation and agricultural monitoring of Terra MODIS and Sentinel-2 NDVIs. Journal of the Korean Society of Agricultural Engineers 63(6):101-115. https://doi.org/10.5389/KSAE.2021.63.6.101
  35. Tasumi, M. 2003. Progress in operational estimation of regional evapotranspiration using satellite imagery. Ph.D. Thesis, University of Idaho, USA.
  36. Torre, D.M.G., J. Gao and C. Macinnis-Ng. 2021. Remote sensing-based estimation of rice yields using various models: a critical review. Geo-spatial Information Science 24(4):580-603. https://doi.org/10.1080/10095020.2021.1936656
  37. Yang, L., S. Deng and Z. Zhang. 2020. New spectral model for estimating leaf area index based on gene expression programming. Computers and Electrical Engineering 83: 106604. https://doi.org/10.1016/j.compeleceng.2020.106604