• Title/Summary/Keyword: Sand wave

Search Result 268, Processing Time 0.023 seconds

MASW FOR QUANTIFYING CHANGE IN SHEAR WAVE VELOCITY AFTER DEEP DYNAMIC COMPACTION AT A SOIL SITE

  • ChoonB.Park;RichardD.Miller
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.4
    • /
    • pp.245-259
    • /
    • 2003
  • Two multichannel analysis of surface wave (MASW) surveys were conducted over a soil site in Tacoma Water's Green River Facility, Washington, where construction of a chemical treatment facility had been planned. The purpose of the surveys was to compare soil stiffness characterized by shear-velocity (Vs) distribution before and after Deep Dynamic Compaction (DDC) operation that was designed to improve the soil stiffness. Site soil consisted of very heterogeneous gravel and cobbles in a sand-and-silt matrix. Results from each survey are represented by two 2-D Vs maps delineating Vs variation of soil below the surveyed lines. One map was constructed from those dispersion curves that were analyzed with a significant amount of subjective judgment involved, whereas the other map was constructed from those dispersion curves analyzed with as much objective information as possible. Comparison of 2-D Vs maps indicates that Vs actually decreased after the DDC operations, possibly due to the loss (or reduction) of cohesive bonding between soil particles caused by the compaction operations.

  • PDF

Landform Changes of Terminal Area of the Nagdong River Delta, Korea (낙동강 삼각주 말단의 지형 변화)

  • 오건환
    • The Korean Journal of Quaternary Research
    • /
    • v.13 no.1
    • /
    • pp.67-78
    • /
    • 1999
  • In present, the terminal area of the Nagdong River Delta consists of micro-depositional landforms with sand barrier islands, sand bars and tidal flats which are arranged parallel to the present shoreline, and have rapidly shifted toward sea during last 100 years due to human activities such as construction of estuary dam, industrial complex and residential area. To clarify the landform changes of the area, the author traced the morphologic change pattern based on interpretation of air-photos, topographic maps and old Korean traditional map, and the results are as follows ; Based on the Daedongyeojido, one of the old Korean map, published in 1861, the area including upper part of the delta was underlying by sea level except two larger sand barriers, which means the Nagdong River Delta was not completely formed as the present outline of morphology by 1860s. According to the topographic map(1 :50,000) of 1916, the delta resembled to the present morphology pattern was exposed in 1916, and at this time the area was mainly composed of one sand barrier island, four sand bars and tidal flats, which had slowly elongated southwards before construction of the Nagdong River Estuary Dam in 1987. But after 1987, the area has been rapidly and drastically shifted southwards in arrange with one chain of sand barrier islands (Elsugdo -Myeonghodo-Sinhodo ) and four chains of sand bars (first chain ; Jinwoodo -Daemadeung-Maenggeummeorideung, second chain : Jangjado-Baeghabdeung, third chain ; Saedeung-Namusitdeung, fourth : Doyodeung-Dadaedeung) parallel to shoreline. This rapid landform change of the area is now occurring, and is seemed to ascribed firstly, to the construction of the Nagdong River Estuary Dam on Elsugdo in 1987, the Sinho Industrial Complex on Sinhodo and Myeongji Residential Area on Myeonghodo in 1992, secondly, to artificial alteration of drainage channel and consequential breakdown of former energy system between riverflow and tidal-and wave-energy. From these facts, it is inferred that the landform change pattern of the area will continue until a new equilibrium between the factor available to this energy system is accomplished.

  • PDF

Nonlinear Dynamic Responses among Wave, Submerged Breakwater and Seabed ($\cdot$수중방파제$\cdot$지반의 비선형 동적응답에 관한 연구)

  • HAN DONG SOO;KIM CHANG HOON;YEOM CYEONG SEON;KIM DO SAM
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.35-43
    • /
    • 2005
  • Recently, various-shaped coastal structures have been studied and developed. Among them, the submerged breakwater became generally known as a more effective structure than other structures, bemuse it not only serves its original function, but also has the ability to preserve the coastal environment. Most previous investigations have been focused on the wave deformation and energy dissipation due to submerged breakwater, but less interest was given to their internal properties and dynamic behavior of the seabed foundation under wave loadings. In this study, a direct numerical simulation (DNS) is newly proposed to study the dynamic interaction between a permeable submerged breakwater aver a sand seabed and nonlinear waves, including wave breaking. The accuracy of the model is checked by comparing the numerical solution with the existing experimental data related to wave $\cdot$ permeable submerged breakwater $\cdot$ seabed interaction, and showed fairly nice agreement between them. From the numerical results, based on the newly proposed numerical model, the properties of the wave-induced pore water pressure and the flow in the seabed foundation are studied. In relation to their internal properties, the stability oj the permeable submerged breakwater is discussed.

A Sediment Transport of Cape Cod Coast, Massachusetts, USA (미국 매사추세츠주 Cape Cod 해안의 퇴적물 이동)

  • 김동주;은고요나
    • Journal of Environmental Science International
    • /
    • v.6 no.6
    • /
    • pp.589-594
    • /
    • 1997
  • A total of 24 surface sediment samples collected from coastal region and fronting of sea cliff on Cape Cod In southeastern Massachusetts, were analyzed to Investigate the sediment transport mechanism. According to the result of grainsize analysis, the overall trend of g.k size decreases from the north(Wood End Beach) to the south(Nauset Light Beachy. The coarser materials tend to be deposited at the foreshore than at the backshore. Especially gavel content(%) Is very high in northern beaches. The lavel fraction tended to concentrate at the toe of the beach. In addition to gravel. the beach and nearshore bar also tended to be deposite of very coarse sand and the Inner fraction accumulate in the offshore bar, Grainsize analyses of sediment Indicates that the coarsest sands Including gravel accumulate In the beach and nearshore bar, the finer fraction winnowed out by wave action to be deposited In the offshore bar. The beach and nearshore bar sands and gavel are subsequently transported laterally by the wave-driven longshore drift, and finally they come to rest in the distal end of Provincetown Hook. The faller offshore sands are trnasported laterally to the south by net southward-directed longshore current.

  • PDF

The Change of Beach Processes at the Coastal Zone with the Impact of Tide (조석(潮汐)의 영향(影響)이 있는 연안(沿岸)해역(海域)에서의 해안과정(海岸過程)의 변화(變化))

  • Kim, Sang-Ho;Lee, Joong-Woo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.257-262
    • /
    • 2002
  • Numerical model introduced in this study combines wave refraction-diffraction, breaking, bottom friction, lateral mixing, and critical shear stress and three sub-models for simulating waves, currents, and bottom change were briefly discussed. Simulations of beach processes and harbor sedimentation were also described at the coast neighboring Bangpo Harbor, Anmyundo, Chungnam, where the area has suffered from accumulation of drifting sand in a small fishing harbor with a wide tidal range. We also made model test for the case of a narrow tidal range at Nakdong river's estuary area to understand the effect of water level variation on the littoral drift. Simulations are conducted in terms of incident wave direction and tidal level. Characteristics of wave transformation, nearshore current, sediment transport, and bottom change are shown and analyzed. We found from the simulation that the tidal level impact to the sediment transport is very important and we should apply the numerical model with different water level to analyze sediment transport mechanism correctly. Although the model study gave reasonable description of beach processes and harbor sedimentation mechanism, it is necessary to collect lots of field observation data, including waves, tides and bottom materials, etc. for better prediction.

  • PDF

Surface Temperature Retrieval from MASTER Mid-wave Infrared Single Channel Data Using Radiative Transfer Model

  • Kim, Yongseung;Malakar, Nabin;Hulley, Glynn;Hook, Simon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.151-162
    • /
    • 2019
  • Surface temperature has been derived from the MODIS/ASTER airborne simulator (MASTER) mid-wave infrared single channel data using the MODerate resolution atmospheric TRANsmission (MODTRAN) radiative transfer model with input data including the University of Wisconsin (UW) emissivity, the National Centers for Environmental Prediction (NCEP) atmospheric profiles, and solar and line-of-sight geometry. We have selected the study area that covers some surface types such as water, sand, agricultural (vegetated) land, and clouds. Results of the current study show the reasonable geographical distribution of surface temperature over land and water similar to the pattern of the MASTER L2 surface temperature. The thorough quantitative validation of surface temperature retrieved from this study is somehow limited due to the lack of in-situ measurements. One point comparison at the Salton Sea buoy shows that the present estimate is 1.8 K higher than the field data. Further comparison with the MASTER L2 surface temperature over the study area reveals statistically good agreement with mean differences of 4.6 K between two estimates. We further analyze the surface temperature differences between two estimates and find primary factors to be emissivity and atmospheric correction.

Macrotidal Beach Classifications Considering Beach Profiles and Changes: The Case of Beaches in Taean Region (2017-2018) (지형형태와 변화를 반영한 대조차 해빈 분류: 태안지역 해빈을 사례로(2017-2018))

  • Kim, Chan Woong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.4
    • /
    • pp.47-65
    • /
    • 2019
  • A case study was conducted in Taean region to seek a more detailed macrotidal beach classification than existing beach classification models (Masselink and Short, 1993). Seepage and ridge & runnel were used for classification. On 20 beaches, 68 transects were surveyed 5 times using VRS-GPS. Cross-section area from the transect profiles, mean grain size from sediment analysis, significant wave height from Swan-wave modeling and beach embaymentization from aerial photograph analysis were used to identify the characteristics of the individual types. The transects were classified into 5 types in Taean region; Type 1: low tidal terrace, Type 2: low tidal terrace & ridge, Type 3: dissipative, Type 4: seasonal ridge, and Type 5: ridge & runnel. Generally, seepage was related to coarse sediment size and ridge & runnel was related to high significant wave height. Each type has different characteristics and there was a tendency between the types. The low tidal terrace type had coarse sediments, because this type is excluded from the littoral cell. In this study, the ridge and runnel type could be applied to the classification because the study area is limited only to the macrotidal environment in Taean region.

Evaluation Technique of Ground Densification on Sand Deposit using SASW and Resonant Column Tests (표면파시험과 공진주시험을 이용한 사질토지반 개량평가 시스템의 개발)

  • 김동수;박형춘;김성인
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.41-52
    • /
    • 1999
  • In order to assess the quality and depth of ground densification by compaction, SPT and/or CPT are performed before and after compaction. Both methods are intrusive and one point tests, require a substantial time to evaluate a large area, and their results are quite dependent on the operation technique and soil type. In this paper, the quality and extent of ground densification by compaction was evaluated by using in situ SASW test and laboratory resonant column (RC) test results. SASW test was used to determine the shear wave velocity profiles before and after compaction, and RC test was adopted to determine the correlation between the normalized shear wave velocity and the density of the site, which is almost uniquely independent of confinement. Testing and data reduction procedures of both tests were discussed, and a simplified evaluation procedure of ground densification was proposed. Finally, the feasibility of the proposed method was verified by performing field study at Inchon International Airport Project. Field densities determined by the proposed method matched well with those determined by sand cone tests.

  • PDF

Evaluation of the new coastal protection scheme at Mamaia Bay in the nearshore of the Black Sea

  • Niculescu, Dragos M.;Rusu, Eugen V.C.
    • Ocean Systems Engineering
    • /
    • v.8 no.1
    • /
    • pp.1-20
    • /
    • 2018
  • The target area of the proposed study, Mamaia beach, is a narrow stretch of sand barrier island that sits between the Siutghiol Lake and the Black Sea. In the northern part of the bay, is located the Midia Port, where between 1966 and 1971 a long extension of 5 km of the offshore was built. Because of this extension, the natural flow of sediments has been significantly changed. Thus, the southern part of the Mamaia Bay had less sand nourishment which meant that the coast was eroding and to prevent it a protection of six dikes was built. After approximately forty years of coastal erosion, the south of the Mamaia Bay had in 2016 a new protection scheme, which includes first of all the beach nourishment and a new dike structure (groins scheme for protection) to protect it. From this perspective, the objective of the proposed study is to evaluate the effectiveness of the old Master plan against the new one by modeling the outcome of the two scenarios and to perform a comparison with a third one, in which the protection dikes do not exist and only the artificial nourishment has been done. In order to assess the wave processes and the current patterns along the shoreline, a complex computational framework has been applied in the target area. This joins the SWAN spectral phase averaged model with the 1D surf model. Furthermore, new UAV technology was also used to map out, chart and validate the numerical model outputs within the target zone for a better evaluation of the trends expected in the shoreline dynamics.

Analysis of Volumetric Deformation Influence Factor after Liquefaction of Sand using Cyclic Direct Simple Shear Tests (CDSS 실험을 이용한 모래의 액상화 후 체적변형 영향인자 분석)

  • Herrera, Diego;Kim, Jongkwan;Kwak, Tae-Young;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.3
    • /
    • pp.65-75
    • /
    • 2024
  • This study investigates liquefaction-induced settlement through strain-controlled tests using a cyclic direct simple shear device on clean sand specimens. By focusing on the accumulated shear strain, soil density, sample preparation method, and cyclic waveshape, this study attempts to enhance the understanding of soil behavior under seismic loading and its further deformation. Results from tests conducted on remolded samples reveal insights into excess pore water pressure development and post-liquefaction volumetric strain behavior, with denser samples exhibiting lower volumetric strains than looser samples. Similarly, the correlation between the frequency and amplitude variations of the wave and volumetric strain highlights the importance of wave characteristics in soil response, with shear strain amplitude changes, varying the volumetric strain response after reconsolidation. In addition, samples prepared under moist conditions exhibit less volumetric strain than dry-reconstituted samples. Overall, the findings of this study are expected to contribute to predictive models to evaluate liquefaction-induced settlement.