• Title/Summary/Keyword: Sample-loading

Search Result 308, Processing Time 0.023 seconds

Process of Structural Design and Analysis of Thin Pressure Cylinder for Shallow Sea Usage (천해용 얇은 외압 실린더의 설계와 해석 과정)

  • Lee, Jae-Hwan;Maring, Kothilngam;Kim, So-Ul;Oh, Taek-Chan;Park, Byoung-Jae
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.201-207
    • /
    • 2016
  • In this paper, an aluminum pressure vessel (cylinder) for a 200 m water depth is designed and analyzed. Because of their lack of usage in the deep sea, only a few papers about pressure vessels subjected to external pressures have previously been published. Moreover, the high level of imported external-pressure-vessel products limits the academic pursuit. Yet, research on internal pressure vessels is widely available because of their broad usage at onshore. This paper presents the process of basic designing and modelling of pressure vessels using the design rules of American Standard of Mechanical Engineering (ASME) Section VIII Division 1. To promote understanding, finite element analysis (FEA) result of an existing sample cylinder which was not designed by ASME code is compared with the design obtained in this paper. Several methodologies are used for the finite element analysis, including rectangular, cylindrical, and axisymmetric coordinate, to attain an accurate stress result. Same dimensions except the thickness of the cylinder and loading condition of 0.200 MPa was given for the current study. Finally, a rigorous design procedure is added for the bolt and boundary conditions of the cylindrical body and its ends. The obtained stress level satisfies the allowable design stress value specified in the ASME code.

Measurement of $G_{max}$ of Sands Using Bender Element in Resonant Column and Torsional Shear Equipment (공진주/비틂전단 시험 및 벤더엘리먼트 시험을 이용한 사질토 지반의 최대전단탄성계수 평가)

  • Kim Dong-Soo;Youn Jun-Ung;Lee Sei-Hyun;Choo Yun-Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.10
    • /
    • pp.17-25
    • /
    • 2005
  • The bender element method is an experimental technique to determine very small strain ($<10^{-3}\%$), elastic shear modulus of a soil, $G_{max}$ by measuring the velocity of shear wave propagation through a sample. Bender elements have been applied as versatile transducers to measure small strain modulus of wet or dry soils in various laboratory apparatus. In this paper, bender element (BE), resonant column (RC) and torsional shear (TS) tests were performed on Toyoura sand at various testing conditions using the modified Stokoe type RC/TS testing equipment capable of performing BE test. Based on the results, applicabilities of the testing method using bender element were evaluated by comparing the values of $G_{max}$ obtained from RC/TS and BE testing methods. For more dependable evaluation, the loading frequency of each testing method was considered for the results obtained for samples in saturated condition by adapting Biot's theory.

Analysis of Quartz Concentrations by FTIR-DOF and FTIR-Transfer method in Concrete Manufacturing Industries (콘크리트 취급사업장의 공기 중 석영 분석방법 비교)

  • Bae, Hye Jeong;Jung, Jong-Hyeon;Phee, Young Gyu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.2
    • /
    • pp.75-83
    • /
    • 2013
  • Objectives: This study was conducted to estimate quartz concentrations in the airborne respirable dust from concrete manufacturing industries and to compare performance of two analytical methods, direct on filter(DOF) and the transfer methods in the Fourier Transform Infrared Spectroscopy(FTIR). Methods: Total 36 area samples were collected from 8 concrete manufacturing industries. Each respirable dust sample was collected by a 25 mm cassette attached to a 10 mm Dorr-Oliver nylon cyclone. The quartz content was estimated using the intensity of the absorption peak of quartz at $799cm^{-1}$ by FTIR. Results: By the comparison of quartz content in respirable dust between the two methods, the results of using DOF method were higher than that of transfer method. And the result of quartz concentrations in respirable dust estimated by DOF method were mostly higher than those by transfer method. Statistically significant difference of quartz concentrations in respirable dust were not found in shakeout, input, loading and transporting processes by two methods. But quartz concentrations in the molding process had the statistically significant difference between DOF and transfer method. Conclusions: The results of the study is suggested that, it be needed to correct the influence of the interferences in order to establish the DOF method when interfering minerals have an effect on quantitative analysis of quartz in respirable dust by the direct on filter method with FTIR.

Shear lag effects on wide U-section pre-stressed concrete light rail bridges

  • Boules, Philopateer F.;Mehanny, Sameh S.F.;Bakhoum, Mourad M.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.67-80
    • /
    • 2018
  • Recently, U-section decks have been more and more used in metro and light rail bridges as an innovative concept in bridge deck design and a successful alternative to conventional box girders because of their potential advantages. U-section may be viewed as a single vent box girder eliminating the top slab connecting the webs, with the moving vehicles travelling on the lower deck. U-section bridges thus solve many problems like limited vertical clearance underneath the bridge lowest point, besides providing built-in noise barriers. Beam theory in mechanics assumes that plane section remains plane after bending, but it was found that shearing forces produce shear deformations and the plane section does not remain plane. This phenomenon leads to distortion of the cross section. For a box or a U section, this distortion makes the central part of the slab lagging behind those parts closer to the webs and this is known as shear lag effect. A sample real-world double-track U-section metro bridge is modelled in this paper using a commercial finite element analysis program and is analysed under various loading conditions and for different geometric variations. The three-dimensional finite element analysis is used to demonstrate variations in the transverse bending moments in the deck as well as variations in the longitudinal normal stresses induced in the cross section along the U-girder's span thus capturing warping and shear lag effects which are then compared to the stresses calculated using conventional beam theory. This comparison is performed not only to locate the distortion, warping and shear lag effects typically induced in U-section bridges but also to assess the main parameters influencing them the most.

A Study on the Effects of Logistics Capabilities of Container Terminals on Service Quality and Customer Response (컨테이너 터미널의 물류역량이 서비스 품질 및 고객반응에 미치는 영향에 관한 연구)

  • Hwang, Seok-Jun;Choi, Hyung-Rim;Hong, Soon-Goo;Lee, Kang-Bae
    • Journal of Navigation and Port Research
    • /
    • v.36 no.1
    • /
    • pp.59-67
    • /
    • 2012
  • This study shows how the logistics capability of container terminal impacts with service quality and customer response. Result of this study would be utilized in marketing strategy for container terminal. Sample design is based on shipping companies which are registered in Korea Shipowners' Association and Korea Shipmanagers' Association from Dec. 5 through 23 in 2011. And total of 243 questionnaires are collected through a personal visit. The result of empirical analysis, management capability of logistics capability factor which have an effect on service quality and customer response is the biggest influence to them. At the same time, Sympathy of service quality factor which have an effect on customer response is the biggest influence to it. Therefore, customers' requirements would be analyzed specifically when loading and unloading plans are devised in container terminal, and based on customers' requirements, best customer service would be provided.

Purification of Lysozyme from Egg White by Multicycle Ion Exchange Chromatography (다중 이온교환크로마토그래피를 이용한 계란난백에서 리소짐의 분리)

  • 허윤석;김형원;김인호
    • KSBB Journal
    • /
    • v.18 no.2
    • /
    • pp.122-126
    • /
    • 2003
  • Multi-cycle chromatographic separation of Iysozyme from egg white was investigated. Multi-cycle chromatography was performed by repeated cycling(one cycle: resin equilibration, sample loading, washing, elution). Two types of cation exchange resins, Cellufine CM C-200 and Bio-rex 70, were used to determine the optimum condition for the separation of Iysozyme by multi-cycle chromatography. The resin was equilibrated in 20 mM Na-phosphate buffer(pH 7.0). Chromatograms of UV absorbance levels of every cycle were compared to confirm the eluting ability of Iysozyme in the two types of gel. Collected samples from eluting regions in every cycle were assayed by 15% SDS-PAGE.

Fracture Analysis of Implant Components using Scanning Electron Microscope - Part I : Implant Fixture (임플란트 구성요소의 파절면에 관한 주사전자현미경적 연구 - Part I: 임플란트 고정체)

  • Lim, Kwang-Gil;Kim, Dae-Gon;Cho, Lee-Ra;Park, Chan-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.3
    • /
    • pp.297-309
    • /
    • 2010
  • The objective of the present study was to perform a fracture analysis on fractured implant fixture after use in vivo and make clear the cause & mechanisms of failure. In case of fatigue fracture, the fractured surface represents fatigue striation. Fatigue striation indicate the progression of the crack front under cyclic loading, are characteristic of stage 2 crack growth. The site of crack initiation and stage 1 crack growth were not easily identified in any of the failure, presumably because of the complex microstructural features of the polycrystalline sample. In case of fractured by overload, dimpled or cleavage surface were observed. Using the interpretation of characteristic markings(ratchet mark, fatigue striation, dimple, cleavage et al) in fracture surfaces, failure events containing the crack origin, crack propagation, material deficiency could be understand.

The influence of the number and the type of magnetic attachment on the retention of mandibular mini implant overdenture

  • Lee, Eunjee;Shin, Soo-Yeon
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.1
    • /
    • pp.14-21
    • /
    • 2017
  • PURPOSE. The aim of this study was to compare the retention of mini implant overdenture by the number, the type of magnetic attachment, and the directions of applied dislodging force. MATERIALS AND METHODS. The experimental groups were designed by the number and type of magnetic attachment. Twenty samples were tested with Magden implants. Each attachment was composed of the magnet assembly in overdenture sample and the abutment keeper in a mandibular model. Dislodging forces were applied to the overdenture samples (50.0 mm/min) in 3 directions. The loading was repeated 10 times in each direction. The values of dislodging force were analyzed statistically using SPSS at 95% level of confidence. RESULTS. The retentive force of group 2 was greater than that of group 1 in both types of attachment in every direction (P < .05). Oblique retentive force of flat type magnetic attachment was higher than that of cushion type attachment in both groups (P < .05). In group 1, oblique retentive force showed the highest and anterior-posterior retentive force showed the lowest value in both attachment types (P < .05). In group 2, both types of attachment showed the lowest retentive force with anterior-posterior direction of dislodging force (P <.05). CONCLUSION. Proper retentive properties for implant overdenture were obtained, regardless of the number and type of magnetic attachment. In both types of magnetic attachment, the greater retentive force was attained with more implants. Oblique retentive force of flat type magnetic attachment was greater than that of cushion type. Among all subgroups, anterior-posterior retentive force was the lowest among three different directions of dislodging force.

A comparison of desorption efficiency by types of solvent for polar and non-polar organic compounds collected on activated charcoal tube (활성탄관에 포집된 극성 및 비극성 유기용제 분석시 탈착용매 종류에 따른 탈착효율 비교)

  • Son, Yonjoo;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.7 no.1
    • /
    • pp.3-18
    • /
    • 1997
  • This study was conducted to evaluate desorption efficiencies by types of desorption solvent for polar and non-polar organic compounds collected on activated charcoal tubes. Analytes tested were toluene, m-xylene, isobutyl alcohol, n-butyl alcohol, cellosolve acetate, and butyl cellosolve. Three different concentration levels of spiked sample were made. Types of cosolvent mixed with the main solvent, $CS_2$, were methanol, pentanol, and dimethylformamide (DMF) and the cosolvent for methylenechloride was methanol. The amounts of cosolvent added to the main solvent were 1, 5, and 10% by volume (v/v%), respectively. The results were as follows: 1. For all mixed solvents except 1% methanol and 1% pentanol with $CS_2$, desorption efficiency significantly increased, compared with that of $CS_2$ alone. 2. Desorption efficiency increased by increasing analyte loading on charcoal tube regardless of mixed solvents used and the material polarity. 3. For all cosolvents mixed with $CS_2$ by 1% and 5% volume, desorption efficiency for non-polar compound was significantly higher than that of polar compound. For the 10% mixed solvents and the methylenechloride mixed with methanol, the results were opposite. 4. The lowest mean percent bias of 4.79% was obtained from the 5% DMF-$CS_2$ mixed solvent, followed by 4.82% from the 10% DMF-$CS_2$ solvent while the highest bias of 23.26% was from the solvent of $CS_2$ alone. Based on the results of this study, in order to increase desorption efficiency, it is recommended to add such cosolvents as methanol, pentanol, and DMF to $CS_2$, preferably 5% by volume for analyzing polar compounds collected in charcoal tubes.

  • PDF

Development of Cell Guide Quality Management System for Container Ships (컨테이너 선박의 셀 가이드 정도 관리 시스템 개발)

  • Park, Bong-Rae;Kim, Hyun-Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.158-165
    • /
    • 2018
  • Generally, container ships contain cargo holds with cell guides that serve to increase the container loading and unloading efficiency, minimize the space loss, and fix containers during the voyage. This paper describes a new quality management system for the cell guides of container ships (the so-called Trim Cell Guide system). The main functions of this system are the trimming of the point cloud obtained using a 3D scanner and an inspection simulation for cell guide quality. In other words, the raw point cloud of cell guides after construction is measured using a 3D scanner. Here, the raw point cloud contains a lot of noise and unnecessary information. Using the GUI interface supported by the system, the raw point cloud can be trimmed. The trimmed point cloud is used in a simulation for cell guide quality inspection. The RANSAC (Random Sample Consensus) algorithm is used for the transverse section representation of a cell guide at a certain height and applied for the calculation of the intervals between the cell guides and container. When the container hits the cell guides during the inspection simulation, the container is rotated horizontally and checked again for a possible collision. It focuses on a system that can be simulated with the same inspection process as in a shipyard. For a practicality review, we compared the precision data gained from an inspection simulation with the measured data. As a result, it was confirmed that these values were within approximately ${\pm}2mm$.