• Title/Summary/Keyword: Salt transport

Search Result 160, Processing Time 0.023 seconds

An Analysis of Aerosol Direct Radiative Forcing Using Satellite Data in East Asia During 2001-2010 (위성자료를 이용한 2001-2010년 동안의 동아시아 지역 에어로졸 직접복사강제력 분석)

  • Jeong, Ji-Hyun;Kim, Hak-Sung;Kim, Joon-Tae;Park, Yong-Pil;Choi, Hyun-Jung
    • Journal of Environmental Science International
    • /
    • v.22 no.8
    • /
    • pp.1053-1062
    • /
    • 2013
  • The shortwave aerosol direct radiative forcing (SWARF) was analyzed using the Clouds and Earth's Radiant Energy System (CERES) data in the East Asian region from 2001 to 2010. In the Yellow Sea and the Korean Peninsula, located in the leeward side of China, significantly negative high SWARF at the top of atmosphere (TOA) occurs due to the long-range transport of anthropogenic (e.g. sulphate) and natural aerosols (e.g. mineral dust) from the East Asian continent. Conversely, eastern China has much higher levels of SWARF at the surface (SFC) due to anthropogenically emitted aerosol than in the Yellow Sea and the Korean Peninsula. Since the radiative forcing of aerosols in the atmosphere are different in type, aerosol types were classified into sea salt+sulphate, smoke, sulphate and dust by using satellite data. The analysis on the SWARF by the classified aerosol types indicated that sulphate occupies a predominant portion of the atmosphere in the Yellow Sea and the Korean Peninsula in the summer. In particular, the annual averages of the summer TOA SWARF increased in the Yellow Sea and the Korean Peninsula from 2001 to 2010.

The study of a novel SWRO-PRO hybrid desalination technology (SWRO-PRO 복합해수담수화 신공정기술의 연구)

  • Kim, Jisook;Yeo, Inho;Lee, Wonil;Park, Taeshin;Park, Yonggyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.4
    • /
    • pp.317-324
    • /
    • 2018
  • SWRO-PRO hybrid desalination technology is recently getting more attention especially in large desalination markets such as USA, Middle East, Japan, Singapore, etc. because of its promising potential to recover a considerable amount of osmotic energy from brine (a high-concentration solution of salt, 60,000 - 80,000 mg/L) and also to minimize the impact of the discharged brine into a marine ecosystem. By the research and development of the core technologies of the SWRO-PRO desalination system in a national desalination research project (Global MVP) supported by Ministry of Land, Infrastructure, and Transport (MOLIT) and Korea Agency for Infrastructure Technology Advancement (KAIA), it is anticipated that around 25% of total energy consumption rate (generally 3 to $4kWh/m^3$) of the SWRO desalination can be reduced by recovering the brine's osmotic energy utilizing wastewater treatment effluent as a PRO feed solution and an isobaric pressure exchanger (PX, ERI) as a PRO energy converter. However, there are still several challenges needed to be overcome in order to ultimately commercialize the novel SWRO-PRO process. They include system optimization and integration, development of efficient PRO membrane and module, development of PRO membrane fouling control technology, development of design and operation technology for the system scaling-up, development of diverse business models, and so on. In this paper, the current status and progress of the pilot study of the newly developed SWRO-PRO hybrid desalination technology is discussed.

A Comparison between Wet-only and Bulk Deposition at Two Forest Sites in Japan

  • Imamura, Naohiro;Iwai, Noriko;Tanaka, Nobuaki;Ohte, Nobuhito
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.1
    • /
    • pp.67-77
    • /
    • 2018
  • To investigate the effects of forest and the surrounding natural and anthropogenic sources on the bulk depositions on forested land, this study examined differences in ion concentrations between wet-only and bulk samples at two forested sites in Japan. The surrounding natural and anthropogenic sources at each site were different; Shirasaka is in a rural area and Tanashi is an urban environment. The volume weighted (vw) mean concentrations of $K^+$ and $Ca^{2+}$ in the bulk samples were significantly (p<0.05) higher than those in the wet-only samples at both sites. The forest canopy and a nearby incineration plant were hypothesized to be the main sources of $K^+$ contaminants at Shirasaka and Tanashi, respectively. The transport of sea salt and urban dust may explain the presence of enriched $Ca^{2+}$ concentrations in the bulk samples at Shirasaka and Tanashi, respectively. The $NH_4{^+}$ concentrations in the Shirasaka bulk samples were significantly (p<0.05) lower than those in the wet-only samples. The vw mean $SO{_4}^{2-}$ and $NO_3{^-}$ concentrations in both sample types were not significantly different at either site. This study demonstrated that the ion concentration differences between wet-only and bulk samples were affected by nearby natural and anthropogenic sources even at forest sites, similar to previous findings for non-forested locations. However, the $K^+$ concentration differences between wet-only and bulk samples may be higher owing to forest sources, even in the absence of anthropogenic sources.

An Efficient Chloride Ingress Model for Long-Term Lifetime Assessment of Reinforced Concrete Structures Under Realistic Climate and Exposure Conditions

  • Nguyen, Phu Tho;Bastidas-Arteaga, Emilio;Amiri, Ouali;Soueidy, Charbel-Pierre El
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.199-213
    • /
    • 2017
  • Chloride penetration is among the main causes of corrosion initiation in reinforced concrete (RC) structures producing premature degradations. Weather and exposure conditions directly affect chloride ingress mechanisms and therefore the operational service life and safety of RC structures. Consequently, comprehensive chloride ingress models are useful tools to estimate corrosion initiation risks and minimize maintenance costs for RC structures placed under chloride-contaminated environments. This paper first presents a coupled thermo-hydro-chemical model for predicting chloride penetration into concrete that accounts for realistic weather conditions. This complete numerical model takes into account multiple factors affecting chloride ingress such as diffusion, convection, chloride binding, ionic interaction, and concrete aging. Since the complete model could be computationally expensive for long-term assessment, this study also proposes model simplifications in order to reduce the computational cost. Long-term chloride assessments of complete and reduced models are compared for three locations in France (Brest, Strasbourg and Nice) characterized by different weather and exposure conditions (tidal zone, de-icing salts and salt spray). The comparative study indicates that the reduced model is computationally efficient and accurate for long-term chloride ingress modeling in comparison to the complete one. Given that long-term assessment requires larger climate databases, this research also studies how climate models may affect chloride ingress assessment. The results indicate that the selection of climate models as well as the considered training periods introduce significant errors for mid- and long- term chloride ingress assessment.

Microfiltration/ultrafiltration polyamide-6 membranes for copper removal from aqueous solutions

  • El-Gendi, Ayman;Ali, Sahar;Abdalla, Heba;Saied, Marwa
    • Membrane and Water Treatment
    • /
    • v.7 no.1
    • /
    • pp.55-70
    • /
    • 2016
  • Microfiltration/ultrafiltration (MF/UF) Adsorptive polyamide-6 (PA-6) membranes were prepared using wet phase inversion process. The prepared PA-6 membranes are characterized by scanning electron microscopy (SEM), porosity and swelling degree. In this study, the membranes performance has examined by adsorptive removal of copper ions from aqueous solutions in a batch adsorption mode. The $PA-6/H_2O$ membranes display sponge like and highly porous structures, with porosities of 41-73%. Under the conditions examined, the adsorption experiments have showed that the $PA-6/H_2O$ membranes had a good adsorption capacity (up to 120-280 mg/g at the initial copper ion concentration ($C_0$) = 680 mg/L, pH7), fast adsorption rates and short adsorption equilibrium times (less than 1.5-2 hrs) for copper ions. The fast adsorption in this study may be attributed to the high porosities and large pore sizes of the $PA-6/H_2O$ membranes, which have facilitated the transport of copper ions to the adsorption. The results obtained from the study illustrated that the copper ions which have adsorbed on the polyamide membranes can be effectively desorbed in an Ethylene dinitrilotetra acetic acid Di sodium salt ($Na_2$ EDTA) solution from initial concentration (up to 92% desorption efficiency) and the PA-6 membranes can be reused almost without loss of the adsorption capacity for copper ions. The results obtained from the study suggested that the $PA-6/H_2O$ membranes can be effectively applied for the adsorptive removal of copper ions from aqueous solutions.

The Effect of NaCl on the Greening of Etiolated Leaves of Barely (Hordeum vulgare L.) Seedings (NaCl이 황백화된 보리(Hordeum vulgare L.) 잎의 녹화에 미치는 영향)

  • 정화숙;임영진;송승달;노광수;송종석;박강은
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1023-1030
    • /
    • 2002
  • The effects on photosynthesis of NaCl(0, 0.2, 0.4, 0.6, 0.8 or 1.0 M) were examined in etiolated barley seedlings. Chlorophyll(Chl) a, Chl b and carotenoid contents, Chl a fluorescence and quenching coefficients of Chl fluorescence have been determined in the primary leaves of etiolated barley seedlings cultivated under low light(60 $\mu$$m^{-2}\;s^{-1}$). Chl a, b, and carotenoid contents were decreased remarkably in comparison with the control at 0.4 M NaCl. However, the value of Fo and Fv were decreased at 0.6 M NaCl and the ratio of Fv/Fm were deceased at 1.0 M NaCl. Chlorophyll synthesis was seriously inhibited from 0.4 M NaCl, and the photosynthetic electron transport system was inhibited from 0.6 M NaCl. Quantum of photosystem II reaction center was inhibited at 1.0 M NaCl. The effects of NaCl on the Chl content were raised in a 6 hrs, but the effects of NaCl on the value of Fo, Fv and Fv/Fm were raised in 30 hrs. The value of qP was decreased in comparison with the control at all concentrations, but there was a small change in the value qE. These results provide evidence that NaCl inhibited effects of various concentration of NaCl were inhibited quinone redox, however, proton gradient between thylakoid membranes was little damaged.

Administration of antibiotics contributes to cholestasis in pediatric patients with intestinal failure via the alteration of FXR signaling

  • Xiao, Yongtao;Zhou, Kejun;Lu, Ying;Yan, Weihui;Cai, Wei;Wang, Ying
    • Experimental and Molecular Medicine
    • /
    • v.50 no.11
    • /
    • pp.14.1-14.14
    • /
    • 2018
  • The link between antibiotic treatment and IF-associated liver disease (IFALD) is unclear. Here, we study the effect of antibiotic treatment on bile acid (BA) metabolism and investigate the involved mechanisms. The results showed that pediatric IF patients with cholestasis had a significantly lower abundance of BA-biotransforming bacteria than patients without cholestasis. In addition, the BA composition was altered in the serum, feces, and liver of pediatric IF patients with cholestasis, as reflected by the increased proportion of primary BAs. In the ileum, farnesoid X receptor (FXR) expression was reduced in patients with cholestasis. Correspondingly, the serum FGF19 levels decreased significantly in patients with cholestasis. In the liver, the expression of the rate-limiting enzyme in bile salt synthesis, cytochrome P450 7a1 (CYP7A1), increased noticeably in IF patients with cholestasis. In mice, we showed that oral antibiotics (gentamicin, GM or vancomycin, VCM) reduced colonic microbial diversity, with a decrease in both Gram-negative bacteria (GM affected Eubacterium and Bacteroides) and Gram-positive bacteria (VCM affected Clostridium, Bifidobacterium and Lactobacillus). Concomitantly, treatment with GM or VCM decreased secondary BAs in the colonic contents, with a simultaneous increase in primary BAs in plasma. Moreover, the changes in the colonic BA profile especially that of tauro-beta-muricholic acid ($T{\beta}MCA$), were predominantly associated with the inhibition of the FXR and further altered BA synthesis and transport. In conclusion, the administration of antibiotics significantly decreased the intestinal microbiota diversity and subsequently altered the BA composition. The alterations in BA composition contributed to cholestasis in IF patients by regulating FXR signaling.

Comparative Phenotypic Analysis of Anabaena sp. PCC 7120 Mutants of Porin-like Genes

  • Schatzle, Hannah;Brouwer, Eva-Maria;Liebhart, Elisa;Stevanovic, Mara;Schleiff, Enrico
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.5
    • /
    • pp.645-658
    • /
    • 2021
  • Porins are essential for the viability of Gram-negative bacteria. They ensure the uptake of nutrients, can be involved in the maintenance of outer membrane integrity and define the antibiotic or drug resistance of organisms. The function and structure of porins in proteobacteria is well described, while their function in photoautotrophic cyanobacteria has not been systematically explored. We compared the domain architecture of nine putative porins in the filamentous cyanobacterium Anabaena sp. PCC 7120 and analyzed the seven candidates with predicted OprB-domain. Single recombinant mutants of the seven genes were created and their growth capacity under different conditions was analyzed. Most of the putative porins seem to be involved in the transport of salt and copper, as respective mutants were resistant to elevated concentrations of these substances. In turn, only the mutant of alr2231 was less sensitive to elevated zinc concentrations, while mutants of alr0834, alr4741 and all4499 were resistant to high manganese concentrations. Notably the mutant of alr4550 shows a high sensitivity against harmful compounds, which is indicative for a function related to the maintenance of outer membrane integrity. Moreover, the mutant of all5191 exhibited a phenotype which suggests either a higher nitrate demand or an inefficient nitrogen fixation. The dependency of porin membrane insertion on Omp85 proteins was tested exemplarily for Alr4550, and an enhanced aggregation of Alr4550 was observed in two omp85 mutants. The comparative analysis of porin mutants suggests that the proteins in parts perform distinct functions related to envelope integrity and solute uptake.

Electrolytic Reduction of 1 kg-UO2 in Li2O-LiCl Molten Salt using Porous Anode Shroud (Li2O-LiCl 용융염에서의 다공성 양극 슈라우드를 이용한1kg 우라늄산화물의 전해환원)

  • Choi, Eun-Young;Lee, Jeong;Jeon, Min Ku;Lee, Sang-Kwon;Kim, Sung-Wook;Jeon, Sang-Chae;Lee, Ju Ho;Hur, Jin-Mok
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.3
    • /
    • pp.121-129
    • /
    • 2015
  • The platinum anode for the electrolytic reduction process is generally surrounded by a nonporous ceramic shroud with an open bottom to offer a path for $O_2$ gas produced on the anode surface and prevent the corrosion of the electrolytic reducer. However, the $O^{2-}$ ions generated from the cathode are transported only in a limited fashion through the open bottom of the anode shroud because the nonporous shroud hinders the transport of the $O^{2-}$ ions to the anode surface, which leads to a decrease in the current density and an increase in the operation time of the process. In the present study, we demonstrate the electrolytic reduction of 1 kg-uranium oxide ($UO_2$) using the porous shroud to investigate its long-term stability. The $UO_2$ with the size of 1~4mm and the density of $10.30{\sim}10.41g/cm^3$ was used for the cathode. The platinum and 5-layer STS mesh were used for the anode and its shroud, respectively. After the termination of the electrolytic reduction run in 1.5 wt.% $Li_2O-LiCl$ molten salt, it was revealed that the U metal was successfully converted from the $UO_2$ and the anode and its shroud were used without any significant damage.

Study on Characteristics of PM2.5 and Its Ionic Constituents in Chuncheon, Korea (춘천시 PM2.5의 질량농도 및 이온성분 농도의 특성에 관한 연구)

  • Jung, Jin-Hee;Han, Young-Ji
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.6
    • /
    • pp.682-692
    • /
    • 2008
  • Fine particles ($PM_{2.5}$) were collected and analyzed from November 2005 through August 2007 in Chuncheon, Korea to investigate the characteristics of $PM_{2.5}$ and its ionic constituents. The average $PM_{2.5}$ concentration during the study period was $39{\mu}g/m^3$, which is almost two times higher than the annual US NAAQS $PM_{2.5}$ standard of $15{\mu}g/m^3$. $PM_{2.5}$ concentrations were higher in spring and winter than in summer and fall. During spring, Asian Dust events dramatically enhanced $PM_{2.5}$ concentrations, and long-range transport of $PM_{2.5}$ emitted in industrial area of China often occurred during winter based on trajectory analysis. Contribution of $PM_{2.5}$ to $PM_{10}$ concentrations ranged from $72{\mu}g/m^3$ during Asian Dust events to $457{\mu}g/m^3$, indicating that a large portion of $PM_{2.5{\sim}10}$ was transported from China during Asian Dust events. Among the major ionic constituents ${SO_4}^{2-}$ showed the highest concentration, followed by ${NH_4}^+$, ${NO_3}^-$ and ${NO_2}^-$. Chuncheon appeared to be ${NH_4}^+$ rich environment, indicating that $(NH_4)_{2}SO_4$ and ${NH_4}{NO_3}$ were the predominant forms of ${NO_3}^-$ and ${SO_4}^2$ in $PM_{2.5}$. Haze has frequently occurred in Chuncheon since So-Yang dam was constructed in 1973. Haze events were observed on 23 days during sampling period, and the average $PM_{2.5}$ concentration was approximately 1.6 times higher during haze events than during non-haze events. This result suggests that haze enhances the secondary aerosol formation because the aerosol spontaneously absorbs water to form a saturated salt solution, deriving a significant increase in the mass of the particle.