DOI QR코드

DOI QR Code

An Analysis of Aerosol Direct Radiative Forcing Using Satellite Data in East Asia During 2001-2010

위성자료를 이용한 2001-2010년 동안의 동아시아 지역 에어로졸 직접복사강제력 분석

  • Jeong, Ji-Hyun (Department of Earth Science Education, Korea National University of Education) ;
  • Kim, Hak-Sung (Department of Earth Science Education, Korea National University of Education) ;
  • Kim, Joon-Tae (Department of Earth Science Education, Korea National University of Education) ;
  • Park, Yong-Pil (Department of Earth Science Education, Korea National University of Education) ;
  • Choi, Hyun-Jung (Korea Science Academy of KAIST)
  • 정지현 (한국교원대학교 지구과학교육과) ;
  • 김학성 (한국교원대학교 지구과학교육과) ;
  • 김준태 (한국교원대학교 지구과학교육과) ;
  • 박용필 (한국교원대학교 지구과학교육과) ;
  • 최현정 (한국과학영재학교)
  • Received : 2013.05.24
  • Accepted : 2013.07.29
  • Published : 2013.08.31

Abstract

The shortwave aerosol direct radiative forcing (SWARF) was analyzed using the Clouds and Earth's Radiant Energy System (CERES) data in the East Asian region from 2001 to 2010. In the Yellow Sea and the Korean Peninsula, located in the leeward side of China, significantly negative high SWARF at the top of atmosphere (TOA) occurs due to the long-range transport of anthropogenic (e.g. sulphate) and natural aerosols (e.g. mineral dust) from the East Asian continent. Conversely, eastern China has much higher levels of SWARF at the surface (SFC) due to anthropogenically emitted aerosol than in the Yellow Sea and the Korean Peninsula. Since the radiative forcing of aerosols in the atmosphere are different in type, aerosol types were classified into sea salt+sulphate, smoke, sulphate and dust by using satellite data. The analysis on the SWARF by the classified aerosol types indicated that sulphate occupies a predominant portion of the atmosphere in the Yellow Sea and the Korean Peninsula in the summer. In particular, the annual averages of the summer TOA SWARF increased in the Yellow Sea and the Korean Peninsula from 2001 to 2010.

Acknowledgement

Supported by : 한국연구재단

References

  1. Albrecht, B. A., 1989, Aerosol, cloud and microphysics, and fractional cloudiness, Science, 245, 1227-1230. https://doi.org/10.1126/science.245.4923.1227
  2. Binkowski, F. S., Roselle, S. J., 2003, Models-3 community multi-scale air quality (CMAQ) model aerosol component: 1.Model description, J. Geophys. Res., 108, 4183, doi:4110.1029/2001JD001409. https://doi.org/10.1029/2001JD001409
  3. Hong, S. C., Chung, I. U., Kim, H. J., Lee, K. T., Lee, J. B., 2008, Estimation of aerosol radiative forcing by AGCM, Journal of the Environmental Sciences, 17, 623-631. https://doi.org/10.5322/JES.2008.17.6.623
  4. Ichoku C., Kaufman, Y. J., Remer, L. A., Levy, R., 2004, Global aerosol remote sensing from MODIS, Advances in Space Research, 34, 820-827. https://doi.org/10.1016/j.asr.2003.07.071
  5. IPCC, 2007, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996pp.
  6. Kaufman, Y. J., Tanre, D., Boucher, O., 2002, A satellite view of aerosols in the climate system, Nature, 419, 215-223. https://doi.org/10.1038/nature01091
  7. Kim, H. S., Byun, G. T., Chung, Y. S., Choi, H. J., Kim, M. J., 2012a, An analysis of aerosol mass concentrations and elemental constituents measured at Cheongwon depending on the backward trajectories of air parcel in East Asia in 2011, Journal of the Environmental Sciences, 21, 855-863. https://doi.org/10.5322/JES.2012.21.7.855
  8. Kim, H. S., Chung, Y. S., Lee, S. G., 2012b, Characteristics of aerosol types during large-scale transport of air pollution over the Yellow Sea region and at Cheongwon, Korea, in 2008, Environ. Monit. Assess., 184, 1973- 1984. https://doi.org/10.1007/s10661-011-2092-9
  9. Kim, H. S., Chung, Y. S., Lee, S.G., 2013, Analysis of spatial and seasonal distributions of MODIS aerosol optical properties and ground-based measurements of mass concentrations in the Yellow Sea region in 2009, Environ. Monit. Assess., 185, 369-382. https://doi.org/10.1007/s10661-012-2559-3
  10. Kim, J., Yoon, S. C., Jefferson, A. S., Kim, W., 2006, Aerosol hygroscopic properties during Asian dust, pollution, and biomass burning episodes at Gosan, Korea in April 2001, Atmos. Environ., 40, 1550-1560. https://doi.org/10.1016/j.atmosenv.2005.10.044
  11. Kim, S. W., Yoon, S. C., Kim, J., Kim, S. Y., 2007, Seasonal and monthly variations of columnar aerosol optical properties over East Asia determined from multi-year MODIS, LIDAR and AERONET Sun/skyradiometer measurements, Atmos. Environ., 41, 1634-651. https://doi.org/10.1016/j.atmosenv.2006.10.044
  12. Lee, J., Kim, J., Lee, H. C., Takemura, T., 2007, Classification of aerosol type from MODIS and OMI over east Asia, J. Korean Met. Soc., 43, 343-357.
  13. Lee, K. H., Kim, J. E., Kim, Y. J., Kim, J., 2004, Impact of the smoke aerosol from Russian forest fires on the atmospheric environment over Korea during May 2003, Journal of Korean Scoiety for Atmospheric Environment, 20, 603-613.
  14. Markowicz, K. M., Flatau, P. J., Vogelmann, A. M., Quinn, P. K., Welton, E. J., 2003, Clear-sky infrared aerosol radiative forcing at the surface and the top of the atmosphere, Quarterly Journal of the Royal Meteorological Society, 129, 2927-2948. https://doi.org/10.1256/qj.02.224
  15. Myhre, G., Myhre, G., Stordal, F., Berglen, T. F., Sundet, J. K., Isaksen, I. S. A., 2004, Uncertainties in the radiative forcing due to sulfate aerosols, J. Atmos. Sci., 61, 485-498. https://doi.org/10.1175/1520-0469(2004)061<0485:UITRFD>2.0.CO;2
  16. NASA, 2012, http://ceres.larc.nasa.gov/order_data.php/CERES_SYN1deg_Ed3A Data Quality Summary; CERES_ EBAF-Surface_Ed2.6r Data Quality summary.
  17. NASA, 2012, http://ceres.larc.nasa.gov/science_information.php/ Data Product Processing Flowchart; CERES Angular Directional Models (ADMs).
  18. Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Hayasaka, T., 2007, An Asian emission inventory of anthropogenic emission sources for the period 1980-2020, Atmos. Chem. Phys., 7, 4419-4444. https://doi.org/10.5194/acp-7-4419-2007
  19. Ramanathan, V., Crutzen, P. J., Kiehl, T., Rosenfeld, D., 2001, Aerosols, climate and the hydrologic cycle, Science, 294, 2119-2124. https://doi.org/10.1126/science.1064034
  20. Ramanathan, V., Chung, C., Kim, D., Bettge, T., Buja, L., Kiehl, J. T., Washington, W. M., Fu, Q., Sikka, D. R., Wild, M., 2005, Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle, Proceedings of the National Academy of Sciences of the United Sates of America, 102, 5326-5333. https://doi.org/10.1073/pnas.0500656102
  21. Remer, L. A., Tanre, D., Kaufman, Y. J., 1998, Algorithm for Remote Sensing of Tropospheric Aerosol from MODIS: Collection 005, NASA, 88 p.
  22. Torres, O., Bharatia, P. K., Herman, J. R., Ahmad, Z., Gleason, J., 1998, Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: Theoretical basis, J. Geaphy. Res., 103, 17099-17110. https://doi.org/10.1029/98JD00900
  23. Tu, J., Wang, H., Zhang, Z., Jin, X., Li, W., 2005, Trends in chemical composition of precipitation in Nanjing, China during 1992-2003, Atmos. Res., 73, 283-298. https://doi.org/10.1016/j.atmosres.2004.11.002
  24. Van Donkelaar, A., Martin, R. V., Brauer, M., Kahn, R., Levy, R., Verduzco, C., Villeneuve, P. J., 2010, Global Estimates of Exposure to Fine Particulate Matter Concentrations from Satellite-based Aerosol Optical Depth. Envir. He, Per., 118(6), 847-855. https://doi.org/10.1289/ehp.0901623
  25. Won, J. G., Yoon, S. C., Kim, S. W., Jefferson, A., Dutton, E. G., Holben, B., 2004, Estimation of direct radiative forcing of Asian dust aerosols with sun/sky radiometer and lidar measurement at Gosan, Korea. J. The meteorol. soc. Japan, 82, 115-130. https://doi.org/10.2151/jmsj.82.115
  26. Yoon, S. C., Kim, S. W., Kim, J. Y., Sohn, B. J., Jefferson, A., Choi, S. J., Cha, D. H, Lee, D. K., Andersond, T. L., Doherty, S. J., Weber R. J., 2006, Enhanced water vapor in Asian dust layer: entrainment processes and implication for aerosol optical properties, Atmo. Envir., 40, 2409-2421. https://doi.org/10.1016/j.atmosenv.2005.12.018