• Title/Summary/Keyword: Salt resistance

Search Result 603, Processing Time 0.028 seconds

Electrical Properties of Polyaniline according to Preparation Conditions (제조 조건에 따른 Polyaniline의 전기적 성질)

  • 김언령;김태영;이보현;김종은;서광석;배종현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.3
    • /
    • pp.215-222
    • /
    • 2001
  • Polyaniline-Camphorsulfonic Acid Emeraldine Salt(PANI-CSA ES) was prepared by doping Polyaniline Ermeralidine Base(PANI EB) with DL-10-Camphorsulfonic Acid(CSA). PANI-CSA ES was solved in an organic solvent by ultrasonification for different periods of time and its surface resistivity was measured. Several PANI-CSA ES solutions solved in different organic solvents were prepared and their surface resistivities were measured. Thermal stability of film casted with PANI-CAS ES solution in m-cresol was estimated by measuring its surface conductivity and the content of this moisture and organic solvents. PANI-CSA ES was blended with different polymeric binders to improve its physical properties and the surface resistivities of several kinds of PANI-CSA ES blends were measured as a function of the content of PANI-CSA ES. PANI-CSA ES polymerized by 1-step oxidative polymerization was prepared and its surface resistivity was measured.

  • PDF

Preparation and Characterization of Durable Softener for Cotton Fiber (면섬유용 내구성유연제의 제조 및 유연특성)

  • Lee, Ae-Ri;Kim, Sung-Rae;Hahm, Hyun-Sik;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.341-345
    • /
    • 2003
  • Organic acid salt of fatty polyamide (DDDT) and acrylate of fatty carbamide (DDTCA) were synthesized as a main component for the softener. O/W type non-ionic softener (NSC) was prepared by blending DDDT and DDTCA with beef tallow, lanolin anhydride. polyoxyethylene(7) stearyl ether, and polyoxyethylene(50) oleyl ether. After treatment of NSC to all cotton fabrics, the physical properties such as tear strength, crease recovery, and flexing abrasion resistance were measured. As a result of the measurement, NSC was proved to be durable non-ionic softener with good softness.

Corrosion Protection Systems on Reinforcement Steep in Marine Concrete Structures (해양콘크리트 구조물의 철근방식 기법에 관한 실험연구)

  • 한기훈;장지원;이강균;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.265-271
    • /
    • 1997
  • Marine concrete structures have been exposed to salt from ocean environments. Chloride-penetration into marine concrete structures should accelerate the corrosion of reinforcement steel, which may severely affect the durability of them. Major concerns are to develop durable concrete for high corrosion resistance of reinforcing steel embedded in concrete. The objective of this experimental study is to investigate adequate usage of corrosion inhibitors by evaluating corrosion level in 80 specimen located in the labatory and in the site. 80 specimen of cube 20${\times}$20${\times}$11.5 and 63 specimen of slab 30${\times}$30${\times}$10 are made for this study.

  • PDF

리튬고분자 이차전지의 전기적 전기화학적 특성

  • 박수길;박종은;손원근;류부형;이주성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.159-162
    • /
    • 1998
  • The new type polymer electrolyte composed of polyacrylonitrile(PAN) baed polymer electrolyte contain LiClO$_4$-EC/PC and LiPF$\sub$6/-EC/PC were developed for the weightless and long or life time of lithium polymer battery system with using polyaniline electrode. The gel type electrolytes were prepared by PAN at different lithium salts in the glove box. We prepared for polymer electrolyte with knife casting method. The minimum thickness of PAN gel electrolyte for the slim type is about <400∼500$\mu\textrm{m}$. These gel electrolytes showed good compatibility with lithium electrode. The test cell of Li/polymer electrolyte/Lithium cobalt oxide solid state cell which was prepared by different lithium salt was researched by electrochemical technique. Resistance of polymer electrolyte which consist of LiClO$_4$ is more less than that of LiPF$\sub$6/ and cycle life is more longer than that of LiPF$\sub$6/.

  • PDF

Chloride Attack Resistibility of Marine Concrete under Pressure (압력을 받는 해양콘크리트의 염해저항성)

  • Kim, Gyeong-Tae;Kim, Gyu-Yong;Lee, Sang-Kyu;Hwang, Eui-Chul;Son, Min-Jae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.52-53
    • /
    • 2018
  • As a result of exposing the concrete at 1 and 6 atm in order to evaluate the salt resistance of the pressurized marine concrete, the pressure resulted in promoting the chloride ion penetration of the concrete. Particularly, the amount of water soluble chloride in the surface area tends to increase rapidly, and this cause is considered to be highly correlated with the size of the capillary pores of the concrete. On the other hand, the blending of blast furnace slag was effective to increse chloride attack resistibility even under the pressure.

  • PDF

Evaluation of Steel Corrosion of Slag Concrete by Half-cell Potential Method (반전지-전위 측정방법을 활용한 슬래그 콘크리트의 철근 부식 저항성능 평가)

  • Lee, Bo-Kyeong;Kim, Gyu-Yong;Kim, Rae-Hwan;Yoon, Min-Ho;Lee, Young-Wook;Choe, Gyeong-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.3-4
    • /
    • 2014
  • There is high probability of steel corrosion on the reinforced concrete exposed to marine environment by penetration of chloride ion. When making concrete structure with slag as admixture in marine environment, salt damage can be prevented. Therefore, this paper presents experimental results of steel corrosion resistance of slag concrete considering marine environment through half-cell potential method which is one of the nondestructive test. As a result of half-cell potential experiment, it was assumed that every specimen exposed to marine environment was not corroded, and as a result of destroying specimens, it was confirmed that there was no corrosion in specimens.

  • PDF

Direct route to high yield synthesis of metal nanoparticles for printable electronic devices

  • Kim, Dong-Hun;Lee, Gwi-Jong;Lee, Yeong-Il;Jeon, Byeong-Ho;Choe, Jun-Rak;Seo, Yeong-Gwan;Kim, Tae-Hun;Gang, Seong-Gu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.14.1-14.1
    • /
    • 2009
  • We found a high yield synthetic route to organic-soluble metal nanoparticles in the concentrated organic phase. The organic phase contains metal salt, amines, fatty acids, nonpolar solvent, and reducing agent. Even using only generic chemicals, organic-soluble silver and copper nanoparticles could be easily obtained by this simple and rapid reaction scheme at large scale. The hydrocarbon-protected metal nanoparticles showed excellent dispersion properties and were successfully printed onto polymer substrates. The printed pattern was heated at $200^{\circ}C$, which showed very low specific electrical resistance (< 10 uOhm$\cdot$cm), sufficient for conducting line of various printable devices.

  • PDF

Stregthenting of Concrete Structures Using Polymer Resins (폴리머를 이용한 콘크리트 구조물의 강도증진)

  • 변근주;김영진;이상민;김정훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.158-161
    • /
    • 1991
  • By applying the newly developed techniques of polymer impregnated concrete (PIC) severely deteriorated and low quality concrete can be restored to an adequate structural material. Early deterioration of concrete causes severe problems for bridge deck concrete, pavement concrete for highways and airports, hydraulic structures and buiilding structures. Deterioration has its orgin in cracks on concrete surface, scaling of spalling due to freezing and thawing, neutralization of concrete, penetrations of water, salt, and calcium chloride. The objective of this study is to develope the new surface impregnants and strengthening techniques for them. It is found that the new impregnants and strengthening techniques developed in this study can retian the charecteristics of the existing concrete and decrease deterioration, and also increase durability, chemical resistance, strength, stiffness and ductility of the existing concrete.

  • PDF

Behavior of $Li^{+}$ in PAN/PVDF based Polymer Electrolyte for Lithium Polymer Battery (리튬 폴리머전지용 PAN/PVDF계 고분자 전해질의 리튬 이온 거동)

  • 이재안;김상기;김종욱;구할본;박계춘
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.540-543
    • /
    • 2000
  • The purpose of this study is to research and develop solid polymer electrolyte(SPE) for Li polymer battery. The temperature dependence of conductivity, impedance spectroscopy and electrochemical properties of PAN/PVDF electrolytes as a function of a mixed ratio were reported for PAN/PVDF based polymer electrolyte films, which were prepared by thermal gellification method of preweighed PAN/PVDF, plasticizer and Li salt. The conductivity of PAN/PVDF electrolytes was $10^{-3}$S/cm. $PAN_{10}$$PVDF_{10}$$LiClO_4$$PC_{5}$$EC_{5}$ electrolyte has the better conductivity compared to others. The interfacial resistance behavior between the lithium electrode and PAN/PVDF based polymer electrolyte has also been investigated and compare with that between the lithium electrode and the PAN/PVDF based polymer electrolyte.

  • PDF

An Experimental Study on the Strengthening Effect of RC Beam with Carbon Fiber Grid (탄소섬유그리드를 이용한 RC보의 보강효과에 관한 실험적 연구)

  • Shim, Nak-Hoon;Kim, Jeong-Jae;Park, Young-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.107-118
    • /
    • 2002
  • The purpose of this study is to investigate the strengthening effect of RC beams with carbon fiber grid. Carbon fiber grid that is very lightweight and stronger than steel reinforcement does not rust or corrode and has a very high resistance to salt. In this study, five real size specimens which are strengthened with different types of carbon fiber grid are tested. With the results of this tests, we found the physical and mechanical properties of carbon fiber grid and polymer mortar which are used to strengthen the damaged or cracked reinforcement concrete beams. we also investigate the strengthening effect of carbon fiber grid on the five flexural test specimens that have cracks.