• Title/Summary/Keyword: Salt Effect

Search Result 1,819, Processing Time 0.029 seconds

Effect of Gelatin Particles on Cell Proliferation in Polymer Scaffolds Made Using Particulate Leaching Technique. (Particulate Leaching 기법을 사용한 Polymer Scaffold 상의 세포증식에 있어서 젤라틴 입자의 효과)

  • 서수원;신지연;김진훈;김진국;길광현
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.1-4
    • /
    • 2004
  • On the background of general idea and technique of bioscience, medicine and engineering, tissue engineering aim at maintenance, improvement and repair of human body function through manufacturing and transplantation of artificial tissue and organ exchangeable human body. Basic material used in the area is scaffold that aid tissue and organ formation. Making scaffold, solvent-casting and particulate leaching technique is widely used in manufacturing of porous polymer scaffold. There are many types of particle including salt and gelatin. Salt is a most commonly used particulate because it is easily available and very easy to handle and gelatin particle is another candidate for this method because it is known as a material, which enhances cell attachment and proliferation. But there is no comparative study of two kinds of materials. In this study we compared the biocompatibility of the two scaffolds made from salt(salt scaffold) and gelatin particle (gelatin scaffold). These results demonstrated that gelatin scaffold showed better attachment of cells at the initial stage and better proliferation of cells. The better performance of gelatin scaffold is contributed to the better connection of pores in the same porosity.

Effect of In-Vitro Fertilization of Porcine Matured Oocytes in Different IVM-IVC Culture Media on the Development of the Embryos (미성숙 돼지 난자가 다른 체외성숙.배양에 의한 배 발달률에 미치는 영향)

  • 안미현;홍대욱;석호봉
    • Journal of Embryo Transfer
    • /
    • v.18 no.3
    • /
    • pp.269-274
    • /
    • 2003
  • This experiment was carried out to investigate the effects of different IVM-IVC culture media factors, such as development rates according to the maturation media, collecting times from slaughter to initiation of incubation and with cumulus cells, on in vitro maturation of oocytes collected from 3∼5mm diameter follicles of the swine abattoir The development rates significantly(p<0.05) higher when the oocytes were matured TCM-199 media than NCSU-23 media. In comparing with TCM199 medium in presence of Earle's salts and Hank's salt, there were no significantly differences between each salt balance in cleaved rate and in number of morulae plus blastocyst. Among 1,455 immature oocytes, 999(68.6%) of oocytes were cleaved. The number of development to the morulae and blastocysts were 617(61.8%) include 62 balstocysts(6.2%).

Remineralization effect of bamboo salt on incipient subsurface caries enamel (초기우식법랑질 표면 하방에 미치는 죽염의 재광화 효과)

  • Kim, Ae-Ok;Kim, Kyung-Hee;Ha, Myung-Ok
    • Journal of Korean society of Dental Hygiene
    • /
    • v.17 no.5
    • /
    • pp.817-826
    • /
    • 2017
  • Objectives: The aim of this study was to investigate the effects of bamboo salts on remineralization effects on subsurface of artificial carious enamel. Methods: Incipient carious enamel was formed in permanent bovine incisors and then specimens were divided into three groups randomly: 3% bamboo salt (BS), 2% (NaF) and the solution of mixed 3% BS and 2% NaF. For remineralization, specimens of each of the three groups were treated for 24 hrs at $37^{\circ}C$ incubator. After treatment, specimens were analyzed using SEM and VHN. Statistical analysis used was one-way ANOVA. Results: In SEM observation, the BS group showed narrower distances between enamel rods than the cases of incipient subsurface caries enamel. The NaF and BS+NaF groups showed that the enamel rods near the surface were destructed, and innumerable round small particles were deposited near the surface of enamel. The BS+NaF group showed more minerals attachment between enamel rods than the cases of other groups. The differences in subsurface microhardness (${\Delta}VHN$) increased all of three groups in total by $80{\mu}m$. The ${\Delta}VHN$ of the BS+NaF group increased significantly more than NaF and BS groups in depth of $50{\mu}m$, $80{\mu}m$. Conclusions: The 3% bamboo salt with 2% NaF solution was found to increase subsurface hardness of incipient caries enamel. Thus, bamboo salt will be used to contribute to prevention on dental caries.

Synergistic Effects for Remediation of Salt-affected Soil using Dendranthema zawadskii var. latilobum and Soil Amendments under High-concentration Calcium Chloride (고농도 염화칼슘 농도처리에 따른 토양개량제와 구절초의 염분저감 상승효과)

  • Yoon, Yong-Han;Yang, Ji;Park, Je-Min;Ju, Jin-Hee
    • Journal of Environmental Science International
    • /
    • v.30 no.10
    • /
    • pp.803-809
    • /
    • 2021
  • This study aimed to investigate the effects of soil amendment (heat-expanded clay and active carbon) and planting of Dendranthema zawadskii var. latilobum on the remediation of salt-affected soil and the plant growth under high calcium chloride (CaCl2) concentration. The experimental group comprised treatments including Non treatment (Cont.), heat-expanded clay (H), active carbon (AC), planting (P), heat-expanded clay+planting (H+P), active carbon+planting (AC+P). A 200 mL solution of CaCl2 at a concentration of 10 g·L-1 was applied as irrigation once every 2 weeks. Compared to the Cont., the incorporation of the 'heat-expanded clay' amendment decreased electrical conductivity of the soil leachate and cation exchange capacity, whereas the growth of Dendranthema zawadskii var. latilobum was relatively increased. These results suggest that the combination of 'heat-expanded clay' amendment and planting will mitigate negative effect of de-icing salts and improve plant growth in salt-contaminated roadside soils.

Sensory and Antioxidative Characteristics of AF-343 Containing Salt-reduced Dried Bulgogi Bibimbap (AF-343 함유 저염 건조 불고기 비빔밥의 관능적 항산화적 특성)

  • Kim, Hae-Young
    • Journal of the Korean Society of Food Culture
    • /
    • v.34 no.1
    • /
    • pp.53-60
    • /
    • 2019
  • This study investigated the sensory characteristics and antioxidative activity of the reduced salt dried bulgogi bibimbap containing AF-343, a dandelion-derived compound extract. A sample with a 30% reduced salt had a sodium amount of 659.01 mg, which was significantly lower than that of the sample before the reduction (p<0.05). The textural hardness of the SW (Standard sample with the AF-343), showed the lowest value of $1.03N/cm^2$, indicating that the AF-343-containing sample could have a slightly softer texture than the non-containing sample. In the analytical sensory test, the AF-343-containing samples showed a synergistic effect on the aroma and flavor of bulgogi, with values of 5.7 and 8.4, respectively, which were significantly higher than that of the non-containing sample group (4.3 and 4.4, respectively). The hardness by the sensory test was slightly hard with values of 7.2-8.1 in all samples, indicating that textural improvement was needed. In the acceptance test, all the samples scored with slightly lower values of 4-5 points, highlighting the need for future studies to improve the sensory characteristics of dried bibimbap. The flavonoid contents of AF-343-containing SW and RW sample groups were 68.21 and 64.31 mg GAE/100 g, respectively, which were significantly higher than those of the samples without AF-343 (49.06 and 44.82 mg GAE/100 g, respectively) (p<0.05). The ABTS and DPPH radical scavenging activities were similar to those of the flavonoid contents. As a result, in the production of AF-343-containing reduced-salt dried bulgogi bibimbap, more study on the textural improvement will be needed to achieve better palatability.

An Experimental Study on the Mechanical Properties of High Modulus Carbon-Epoxy Composite in Salt Water Environment (염수 환경에 노출된 고강성 탄소/에폭시 복합재의 물성치 변화 연구)

  • Moon, Chul-Jin;Lee, Cheong-Lak;Kweon, Jin-Hwe;Choi, Jin-Ho;Jo, Maeng-Hyo;Kim, Tae-Gyeong
    • Composites Research
    • /
    • v.21 no.6
    • /
    • pp.1-7
    • /
    • 2008
  • The main objective of this study is to investigate the effect of salt water on the mechanical properties of a high modulus carbon-epoxy composite. Specimens were made of a carbon-epoxy composite UPN139B of SK Chemical and tested under inplane tension and shear after 0, 1, 3, 6, 9, and 12 months immersion in 3.5% salt water. Acceleration technique such as temperature elevation was not used. The tensile strengths and modulli in fiber and matrix direction did not show any remarkable degradation until 12 months immersion. In contrast to the tensile properties, shear strength and modulus started to gradually decrease up to about 10% of values of dry specimens after 12 months immersion. It was confirmed through the test that the material UPN139B can be an effective material for the shell structures in salt water to resist against the external pressure buckling because of the high fiber directional modulus and corrosion resistance.

Conceptual design of a dual drum-controlled space molten salt reactor (D2 -SMSR): Neutron physics and thermal hydraulics

  • Yongnian Song;Nailiang Zhuang;Hangbin Zhao;Chen Ji;Haoyue Deng;Xiaobin Tang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2315-2324
    • /
    • 2023
  • Space nuclear reactors are becoming popular in deep space exploration owing to their advantages of high-power density and stability. Following the fourth-generation nuclear reactor technology, a conceptual design of the dual drum-controlled space molten salt reactor (D2-SMSR) is proposed. The reactor concept uses molten salt as fuel and heat pipes for cooling. A new reactivity control strategy that combines control drums and safety drums was adopted. Critical physical characteristics such as neutron energy spectrum, neutron flux distribution, power distribution and burnup depth were calculated. Flow and heat transfer characteristics such as natural convection, velocity and temperature distribution of the D2-SMSR under low gravity conditions were analyzed. The reactivity control effect of the dual-drums strategy was evaluated. Results showed that the D2-SMSR with a fast spectrum could operate for 10 years at the full power of 40 kWth. The D2-SMSR has a high heat transfer coefficient between molten salt and heat pipe, which means that the core has a good heat-exchange performance. The new reactivity control strategy can achieve shutdown with one safety drum or three control drums, ensuring high-security standards. The present study can provide a theoretical reference for the design of space nuclear reactors.

Effect of Soil Salinity on Growth, Yield and Nutrients Uptake of Whole Crop Barley in Newly Reclaimed Land (신간척지에서 토양 염농도가 청보리 생육, 수량 및 양분 흡수에 미치는 영향)

  • Lee, Sang-Bok;Cho, Kwang-Min;Shin, Pyung;Yang, Chang-Hyu;Back, Nam-Hyun;Lee, Kyeong-Bo;Baek, Seung-Hwa;Chung, Doug-Young
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.332-337
    • /
    • 2013
  • BACKGROUND: Newly reclaimed land has poor soil environment for crop growth since it is high in salt concentration but low in organic content compared with ordinary soil. It is known that whole-crop-barley can grow better in the soil of relatively high salt concentration than other crops but, the growth is poor at the concentration if higher than certain amount and it is a difficulty to secure productivity. Hence, the level of soil salt concentration suitable for the production of bulky feed in newly reclaimed land has been investigated. METHODS AND RESULTS: At Saemanguem reclaimed land, the land for the soil salt concentration electrical conductivity (EC) 0.8, 3.1, 6.5, 11.0 dS/m was selected; and chemical fertilizer $N-P_2O_5-K_2O$ (150-100-100kg/ha) was tested; and forage barley 220kg/ha were sown. The soil salt concentration during the cultivation period decreased in the order of harvest season>earing season>sowing season>wintering season, and the salt concentration in harvest season is 1.4-4.2 times higher than that of the sowing season. The higher the salt concentration, the poorer the over ground growth due to poor rooting; especially at EC 11.0 ds/m there was emergence but, it blighted after wintering. The Yield from the soil salt concentration 3.1dS/m and 6.5 dS/m was 68% and 35% from that of the soil salt concentration 0.8 dS/m (8.8 MT/ha) respectively. The proline content in early life stage was more than that of the harvest season, and it increased with salt concentration. The higher salt concentration, the more $Na_2O$ and MgO content in harvest season; but the higher the salt concentration, the less the content of N, $P_2O_5$, $K_2O$ and CaO. CONCLUSION(S): When the soil salt concentration becomes higher than 3.1 dS/m, the yield becomes poor because there is serious growth inhibition of forage barley both in root part and above aerial part that results in unbalanced absorption of nutrients. Therefore, it is recommended that the salt concentration should be lowered below 3.1 dS/m by underground drainage facilities or irrigating water for the stable production of whole-crop-barley.

Selection of Salt-Tolerant Silage Rice Through in vitro Screening and Saltol QTL Analysis (기내 선발과 Saltol QTL 분석을 통한 내염성 증진 사료용 벼 선발)

  • Cho, Chuloh;Kim, Kyung Hwa;Ahn, Eok-Keun;Park, Hyangmi;Choi, Man-Soo;Chun, Jaebuhm;Seo, Mi-Suk;Jin, Mina;Kim, Dool-Yi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.3
    • /
    • pp.214-221
    • /
    • 2020
  • Salinity is one of the major abiotic stressors that inhibits the growth, yield, and productivity of crop plants. Therefore, it is necessary to develop crops with increased salt tolerance for cultivation in saline soils such as is found in reclaimed land. The objective of this study was to develop a salt-tolerant silage rice line that grows on reclaimed land. In order to develop this salt-tolerant silage rice, we transferred Saltol, a major QTL associated with salt tolerance, from IR64-Saltol, a salt-tolerant indica variety, into Mogyang, a susceptible elite japonica variety. To determine the effect of salt stress, Mogyang and IR64-Saltol cultivars were grown on a medium containing various concentrations of NaCl in in vitro conditions. Shoot length was found to decrease with increasing salt concentrations, and root growth was almost arrested at NaCl concentrations over 50 mM in the Mogyang cultivar. Based on these preliminary results, we screened five salt-tolerant lines showing superior growth under salt stress conditions. Polymerase chain reaction and sequencing results showed that the introgression types of Saltol QTL were derived from the IR64-Saltol cultivar in almost all selected lines. Based on the observed growth and physiological characteristics, the new Saltol introgression lines showed higher salt tolerance compared to the Mogyang parental cultivar. The salt-tolerant lines identified in this study could be used as a genetic resource to improve rice salt tolerance.

Effect of Phosphate and Citrate Salts on the Emulsion Stability of Soy Protein Isolate in the Presence of Calcium (칼슘 존재하에서 인산과 구연산업이 분리대두단백질의 유화 안정성에 미치는 영향)

  • Kim, Yeong-Suk;Yeom, Dong-Min;Hwang, Jae-Gwan
    • The Korean Journal of Food And Nutrition
    • /
    • v.7 no.3
    • /
    • pp.177-182
    • /
    • 1994
  • The effect of phosphate salt (NafHP04) and sodium citrate on the emulsion stability of soy protein isolate (SPI) in the presence of calcium was investigated in terms of salt concentration and addition order. Both phosphate and citrate salts decreased the solubility of SPI despite their pH enhancing effects. Addition of calcium chloride (CaCl2) significantly decreased ES, which showed nearly negligible at more than 3 mM CaCl2 concentration. When Na2HP04 were added in the presence of 5 mM Cac12, 55 greatly increased up to 20mM concentration, above which however ES decreased. It was found that the addition order of Na2HPO4 and CaCl2 affected ES. The addition of phosphate and subsequent CaCl2 exhibited the higher 55 than the reverse order. In both cases, the overall ES profile was found to be nearly similar to the solubility profile of SPI, indicating the positive relationship between solubility and emulsion stability of SPI in the presence of calcium. Similar trend to the phosphate effect on ES was also observed for sodium citrate in the presence of calcium.

  • PDF