• Title/Summary/Keyword: Salesman problem

검색결과 211건 처리시간 0.023초

Optimization of the Travelling Salesman Problem Using a New Hybrid Genetic Algorithm

  • Zakir Hussain Ahmed;Furat Fahad Altukhaim;Abdul Khader Jilani Saudagar;Shakir Khan
    • International Journal of Computer Science & Network Security
    • /
    • 제24권3호
    • /
    • pp.12-22
    • /
    • 2024
  • The travelling salesman problem is very famous and very difficult combinatorial optimization problem that has several applications in operations research, computer science and industrial engineering. As the problem is difficult, finding its optimal solution is computationally very difficult. Thus, several researchers have developed heuristic/metaheuristic algorithms for finding heuristic solutions to the problem instances. In this present study, a new hybrid genetic algorithm (HGA) is suggested to find heuristic solution to the problem. In our HGA we used comprehensive sequential constructive crossover, adaptive mutation, 2-opt search and a new local search algorithm along with a replacement method, then executed our HGA on some standard TSPLIB problem instances, and finally, we compared our HGA with simple genetic algorithm and an existing state-of-the-art method. The experimental studies show the effectiveness of our proposed HGA for the problem.

Flow based heuristics for the multiple traveling salesman problem with time windows

  • Lee, Myung-Sub
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1993년도 춘계공동학술대회 발표논문 및 초록집; 계명대학교, 대구; 30 Apr.-1 May 1993
    • /
    • pp.354-366
    • /
    • 1993
  • In this paper, new algorithms for solving the multiple traveling salesman problem with time windows are presented. These algorithms are based on the flow based algorithms for solving the vehicle scheduling problem. Computational results on problems up to 750 customers indicate that these algorithms produce superior results to existing heuristic algorithms for solving the vehicle routing problems when the time windows are 'tight enough' where 'tight enough' is based on a metric proposed by desrosiers et al.(1987).

  • PDF

비대칭 외판원문제에서 Out-of-Kilter호를 이용한 Perturbation (Perturbation Using Out-of-Kilter Arc of the Asymmetric Traveling Salesman Problem)

  • 권상호
    • 한국경영과학회지
    • /
    • 제30권2호
    • /
    • pp.157-167
    • /
    • 2005
  • This paper presents a new perturbation technique for developing efficient iterated local search procedures for the asymmetric traveling salesman problem(ATSP). This perturbation technique uses global information on ATSP instances to speed-up computation and to improve the quality of the tours found by heuristic method. The main idea is to escape from a local optima by introducing perturbations on the out-of-kilter arcs in the problem instance. For a local search heuristic, we use the Kwon which finds optimum or near-optimum solutions by applying the out-of-kilter algorithm to the ATSP. The performance of our algorithm has been tested and compared with known method perturbing on randomly chosen arcs. A number of experiments has been executed both on the well-known TSPLIB instances for which the optimal tour length is known, and on randomly generated Instances. for 27 TSPLIB instances, the presented algorithm has found optimal tours on all instances. And it has effectively found tours near AP lower bound on randomly generated instances.

유클리디안 외판원 문제를 위한 자기조직화 신경망의 새로운 구조 (A New Structure of Self-Organizing Neural Networks for the Euclidean Traveling Salesman Problem)

  • 이석기;강맹규
    • 산업경영시스템학회지
    • /
    • 제23권61호
    • /
    • pp.127-135
    • /
    • 2000
  • This paper provides a new method of initializing neurons used in self-organizing neural networks and sequencing input nodes for applying to Euclidean traveling salesman problem. We use a general property that in any optimal solution for Euclidean traveling salesman problem, vertices located on the convex hull are visited in the order in which they appear on the convex hull boundary. We composite input nodes as number of convex hulls and initialize neurons as shape of the external convex hull. And then adapt input nodes as the convex hull unit and all convex hulls are adapted as same pattern, clockwise or counterclockwise. As a result of our experiments, we obtain l∼3 % improved solutions and these solutions can be used for initial solutions of any global search algorithms.

  • PDF

외판원문제에 대한 유전알고리즘 성능평가 (Performance Evaluation of Genetic Algorithm for Traveling Salesman Problem)

  • 김동훈;김종율;조정복
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 추계종합학술대회 B
    • /
    • pp.783-786
    • /
    • 2008
  • 외판원문제(Traveling Salesman problem: TSP)는 전형적인 조합최적화 문제로 위치하는 n개의 모든 지점을 오직 한번씩만 방문하는 순회경로를 결정하는 과정에서 순회비용 또는 순회거리를 최소화한다. 따라서 본 논문에서는 종래의 NP-hard문제로 널리 알려진 TSP를 해결하기 위해서 메타 휴리스틱기법 중에서 가장 널리 이용되고 있는 유전 알고리즘(Genetic Algorithm: GA)을 이용한다. 마지막으로, 유전 알고리즘을 이용해 외판원문제에 적합한 성능을 보이는 유전 연산자를 찾아내기 위해 수치 실험을 통해 그 성능에 대한 평가를 한다.

  • PDF

SOFM(Self-Organizing Feature Map)형식의 Travelling Salesman 문제 해석 알고리즘 (Self Organizing Feature Map Type Neural Computation Algorithm for Travelling Salesman Problem)

  • 석진욱;조성원;최경삼
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.983-985
    • /
    • 1995
  • In this paper, we propose a Self Organizing Feature Map (SOFM) Type Neural Computation Algorithm for the Travelling Salesman Problem(TSP). The actual best solution to the TSP problem is computatinally very hard. The reason is that it has many local minim points. Until now, in neural computation field, Hopield-Tank type algorithm is widely used for the TSP. SOFM and Elastic Net algorithm are other attempts for the TSP. In order to apply SOFM type neural computation algorithms to the TSP, the object function forms a euclidean norm between two vectors. We propose a Largrangian for the above request, and induce a learning equation. Experimental results represent that feasible solutions would be taken with the proposed algorithm.

  • PDF

Travelling Salesman Problem을 위한 DNA 컴퓨팅의 코드 최적화 (Code Optimization of DNA Computing for Travelling Salesman Problem)

  • 김은경;이상용
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 추계학술발표논문집 (상)
    • /
    • pp.323-326
    • /
    • 2002
  • DNA 컴퓨팅은 생체 분자들이 갖는 막대한 병렬성을 이용하여 조합 최적화 문제에 적용하는 연구가 많이 시도되고 있다. 특히 TSP(Travelling Salesman Problem)는 간선에 대한 가중치 정보가 추가되어 있기 때문에 가중치를 DNA 염기 배열로 표현하기 위한 효율저인 방법들이 제시되지 않았다. 따라서 본 논문에서는 DNA 컴퓨팅에 DNA 코딩 방법을 적용하여 정점과 간선을 효율적으로 생성하고 표현된 DNA 염기 배열의 간선에 실제간을 적용하여 가중치 정보를 계산하는 ACO(Algorithm for Code Optimization)를 제안한다. DNA 코딩 방법은 변형된 유전자 알고리즘으로 DNA 기능을 유지하며, 서열의 길이를 줄일 수 있으므로 최적의 서열을 생성할 수 있는 특징을 갖는다. 실험에서 ACO를 TSP에 적용하여 Adleman의 DNA 컴퓨팅 알고리즘과 비교하였다. 그 결과 초기 문제 표현에서 우수한 적합도 값을 생성했으며, 경로의 변화에도 능동적으로 대처하여 최적의 결과를 빠르게 탐색할 수 있었다.

  • PDF

Traveling Salesman 문제 해결을 위한 인구 정렬 하이브리드 유전자 알고리즘 (Extended hybrid genetic algorithm for solving Travelling Salesman Problem with sorted population)

  • 유가이올가;나희성;이태경;고일석
    • 한국산학기술학회논문지
    • /
    • 제11권6호
    • /
    • pp.2269-2275
    • /
    • 2010
  • 유전자 알고리즘은 매개변수와 유전자 연산자 그리고 계획과 같은 다양한 요인들에 의해 영향을 받으며, 전통적인 방법을 통한 문제의 해결은 효율적이지만 전체적으로는 실행 가능성의 문제와 결과의 도출에 걸리는 시간의 문제가 있을 수 있다. 이에 따라 전통적인 유전자 알고리즘은 다양한 방법으로 수정 및 적용되어 질 수 있다. 본 연구는 Travelling Salesman 문제를 해결하기 위해 초기에 정렬된 인자를 사용하여 수정된 유전자 알고리즘을 적용하였다. 본 연구를 통한 접근 방법은 초기 문제의 크기를 줄이며 또한 빠른 복합 수렴을 달성하였다. 또한 제안된 방법은 객체지향 접근을 사용한 시뮬레이터를 통해 테스트 되었고 그 결과는 제안된 방법의 타당성을 입증하였다.

최적의 TSP문제 해결을 위한 유전자 알고리즘의 새로운 집단 초기화 및 순차변환 기법 (New Population initialization and sequential transformation methods of Genetic Algorithms for solving optimal TSP problem)

  • 강래구;임희경;정채영
    • 한국정보통신학회논문지
    • /
    • 제10권3호
    • /
    • pp.622-627
    • /
    • 2006
  • TSP(Traveling Salesman Problem)는 N개의 도시가 주어질 때 어떠한 임의의 도시에서 출발하여 모든 도시를 단 한번만 방문하여 다시 출발지로 되돌아오는 여려 경로들 중 가장 짧은 거 리를 구하는 문제이다. 방문 도시수가 증가함에 따라 계산량이 기하급수적으로 증가하게 되는 문제로 인해 NP-Hard문제로 분류되며 유전자 알고리즘이 대표적으로 이용된다. TSP문제에 있어서 보다 우수한 결과를 얻기 위해 현재까지 다양한 연산자들이 개발되고 연구되어 왔다. 본 논문에서는 새로운 집단 초기화 방법과 순차변환 방법을 제안하여 기존의 방법들과 비교를 통해 성능 향상을 입증하였다.

순회 판매원 문제 해결을 위한 개미집단 최적화 알고리즘 개선 (Improvement of Ant Colony Optimization Algorithm to Solve Traveling Salesman Problem)

  • 장주영;김민제;이종환
    • 산업경영시스템학회지
    • /
    • 제42권3호
    • /
    • pp.1-7
    • /
    • 2019
  • It is one of the known methods to obtain the optimal solution using the Ant Colony Optimization Algorithm for the Traveling Salesman Problem (TSP), which is a combination optimization problem. In this paper, we solve the TSP problem by proposing an improved new ant colony optimization algorithm that combines genetic algorithm mutations in existing ant colony optimization algorithms to solve TSP problems in many cities. The new ant colony optimization algorithm provides the opportunity to move easily fall on the issue of developing local optimum values of the existing ant colony optimization algorithm to global optimum value through a new path through mutation. The new path will update the pheromone through an ant colony optimization algorithm. The renewed new pheromone serves to derive the global optimal value from what could have fallen to the local optimal value. Experimental results show that the existing algorithms and the new algorithms are superior to those of existing algorithms in the search for optimum values of newly improved algorithms.