DOI QR코드

DOI QR Code

Extended hybrid genetic algorithm for solving Travelling Salesman Problem with sorted population

Traveling Salesman 문제 해결을 위한 인구 정렬 하이브리드 유전자 알고리즘

  • Yugay, Olga (Department of Computer and Multimedia, Dongguk University) ;
  • Na, Hui-Seong (Department of Computer and Multimedia, Dongguk University) ;
  • Lee, Tae-Kyung (Department of Computer and Multimedia, Dongguk University) ;
  • Ko, Il-Seok (Department of Computer and Multimedia, Dongguk University)
  • Received : 2010.02.23
  • Accepted : 2010.06.18
  • Published : 2010.06.30

Abstract

The performance of Genetic Algorithms (GA) is affected by various factors such as parameters, genetic operators and strategies. The traditional approach with random initial population is efficient however the whole initial population may contain many infeasible solutions. Thus it would take a long time for GA to produce a good solution. The GA have been modified in various ways to achieve faster convergence and it was particularly recognized by researchers that initial population greatly affects the performance of GA. This study proposes modified GA with sorted initial population and applies it to solving Travelling Salesman Problem (TSP). Normally, the bigger the initial the population is the more computationally expensive the calculation becomes with each generation. New approach allows reducing the size of the initial problem and thus achieve faster convergence. The proposed approach is tested on a simulator built using object-oriented approach and the test results prove the validity of the proposed method.

유전자 알고리즘은 매개변수와 유전자 연산자 그리고 계획과 같은 다양한 요인들에 의해 영향을 받으며, 전통적인 방법을 통한 문제의 해결은 효율적이지만 전체적으로는 실행 가능성의 문제와 결과의 도출에 걸리는 시간의 문제가 있을 수 있다. 이에 따라 전통적인 유전자 알고리즘은 다양한 방법으로 수정 및 적용되어 질 수 있다. 본 연구는 Travelling Salesman 문제를 해결하기 위해 초기에 정렬된 인자를 사용하여 수정된 유전자 알고리즘을 적용하였다. 본 연구를 통한 접근 방법은 초기 문제의 크기를 줄이며 또한 빠른 복합 수렴을 달성하였다. 또한 제안된 방법은 객체지향 접근을 사용한 시뮬레이터를 통해 테스트 되었고 그 결과는 제안된 방법의 타당성을 입증하였다.

Keywords

References

  1. D.E. Goldberg, "Genetic Algorithms in Search, Optimization and Machine Learning, Addison", Wesley, pp. 1-88, 1989.
  2. Togan V., Daloglu A. "An Improved genetic algorithm with initial population strategy and self-adaptive member grouping", Computers and Structures, Volume 86, Issue 11-12, pp. 1204-1218, 2008. https://doi.org/10.1016/j.compstruc.2007.11.006
  3. Javadi A.A., Farmani R., T.P. Tan "A Hybrid intelligent genetic algorithm", Advanced Engineering Informatics, Volume 19, Issue 4, pp. 255-262, 2005. https://doi.org/10.1016/j.aei.2005.07.003
  4. K. Katayama, H. Sakamoto, "The Efficiency of Hybrid Mutation Genetic Algorithm for the Travelling Salesman Problem", Mathematical and Computer Modelling, Volume 31, pp. 197-20, 2000.
  5. Buthainah Fahran Al-Dulaimi, and Hamza, A. Ali "Enhanced Traveling Salesman Problem Solving by Genetic Algorithm Technique (TSPGA) Proceedings of World Academy of Science, Engineering and Technology, Volume 28, pp. 296-302, 2008.
  6. G.J.E. Rawlins, "Foundations of Genetic Algorithms", Morgan Kaufmann Publishers, TSPBIB, TSP library, 1991. http://www.ing.unlp.edu.ar/cetad/mos/TSPBIB_home.htm
  7. L. Chambers, "Practical Handbook of Genetic Algorithms Applications", CRC Press, Volume 1, pp, 143-172, 1995.
  8. Liangsheng Qu, Ruixiang Sun, "A synergetic approach to genetic algorithms for solving traveling salesman problem", Information Sciences 117, 267-283, 1999. https://doi.org/10.1016/S0020-0255(99)00026-2
  9. TSP library http://www.tsp.gatech.edu/index.html
  10. Lau Tung Leng, "Guided Genetic Algorithm", University of Essex, A thesis submitted for the degree of Ph.D in Computer Science, Department of Computer Science.
  11. Marco Dorigo, "Ant Colonies for the Traveling Salesman Problem", IRIDIA, Université Libre de Bruxelles. IEEE Transactions on Evolutionary Computation, 1(1):53-66, 1997. https://doi.org/10.1109/4235.585892
  12. Lee Sang-Cheol, Yu Jeong-Cheol, "Improved VRP & GA-TSP Model for Multi-Logistics Center", Journal of the Korea Academia-Industrial cooperation Society, Vol8, Num5, 2007.
  13. Kim Ki-Bong, "Search Method for Consensus Pattern of Transcription Factor Binding Sites in Promoter Region", Journal of the Korea Academia-Industrial cooperation Society, Vol9, Num5, 2008. https://doi.org/10.5762/KAIS.2008.9.5.1218