• Title/Summary/Keyword: Safety of Building Floor

Search Result 176, Processing Time 0.031 seconds

A Study on the Factors Affecting Small-scale Construction Site Safety and Health Compliance (소규모 건설현장 안전보건규제 준수의지 요인 연구)

  • Lee, Byung-Kwan
    • Journal of the Korea Safety Management & Science
    • /
    • v.20 no.2
    • /
    • pp.21-35
    • /
    • 2018
  • The purpose of this study is to reduce the accident rate by introducing a safety system for small construction sites belonging to local governments. In the case of a small construction site, permission is granted through the building permission department and the construction management of the building safety management of 1,000 square meters of floor area less than 3 stories is not properly performed in the Enforcement Decree of the Building Act of Korea. In the current state of industrial accidents in 2016, 81.8% of all accident victims are found to be vulnerable to accident such as those occurring at work places with less than 50 employees. Considering the fact that the construction work with less than 5 billion KRW of the construction cost in Korea generates the most deaths, it is time to introduce the safety and health system of local governments.

Development of Traffic Accident Forecasting Models Considering Urban-Transportation System Characteristics (토지이용 및 교통특성을 반영한 교통사고 예측모형 개발 연구)

  • Park, Jun-Tae;Jang, Il-Jun;Son, Ui-Yeong;Lee, Su-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.6
    • /
    • pp.39-56
    • /
    • 2011
  • This study proposed a traffic accident prediction model developed based on administrative districts of Seoul. The model was to find the relationship between accident rates and the representative land usage of the districts (development density) - the higher the development density (building floor area) is, the higher the traffic accident rate is. The findings showed that traffic accident statistics differ from (1) residential building floor area, (2) commercial building floor area and (3) business building floor area.

A Fundamental Study on the Contaminants Using in Place of the Soapy Water for Floor Slip Resistance Test (바닥의 미끄럼시험에 사용되는 비눗물 대체 물질에 관한 기초적 연구)

  • Kim, Dae-Kyu;Shin, Yun-Ho;Choi, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.156-157
    • /
    • 2015
  • The safety concern of slipping on floors in South Korea has come to the fore as a social problem, but the occurrence of such accidents has not decreased. Slip and fall accidents have several causes, but they are especially common when there is soapy water on the floor during a shower or a bath. Despite this situation, it can be said that there is a lack of standards on surface contamination materials used in floor slip resistance testing. Therefore, in this study, we conducted a survey to identify the components and quantity of soapy water that actually results from a user taking a shower, and the standardization of contamination materials. Based on the results of this experiment, we provide a surface contamination material that can replace the soapy water used in floor slip resistance testing.

  • PDF

A Study on Accidents Occurred in Primary Schools and on the Experimental Test of the Safety of Building Floors (초등학교의 시설물 관련 안전사고 실태분석 및 실내바닥의 거주안전성에 관한 실험적 연구)

  • Choi, Soo-Kyung;Park, Chan-Joo;Kim, Soo-Gil
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.17 no.3
    • /
    • pp.21-32
    • /
    • 2010
  • The purpose of this study is to examine the improvement of the slipperiness of building floors and to test the safety in accidental collision in the primary schools. To perform this purpose effectively, the actual 20,202 cases of accident on the year 2000-2009 which had been dealt by Seoul School Safety and Insurance Association were analysed in several aspects. And to test the current slipperiness and hardness of building floors, 3 primary schools whose construction year differed were examined. This study found that among the indoor accidents of 2,646 cases on the year 2000-2002, 70.7% accidents of them were caused by slipperiness. It was also found that the building floors of the primary schools could not be safe from the result of examining the slipperiness and hardness of the building floors. As the result of this study, it showed that the desirable efficient criterion of slipperiness would be more than C.S.R 0.4, and that of safety in accidental collision would be less than Gs 100G for the safety of primary school students.

A Basic Study on the Evacuation Safety Performance of High-rise Apartment Building (고층 공동주택의 피난성능에 관한 기초적 연구)

  • 이용재
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.75-83
    • /
    • 2001
  • It has been recognized that the evacuation planning is very important for effective evacuation of occupants on fire event. However the present evacuation planning and regulation for fire safety usually tend to meet the minimum requirements based on the existing laws and regulations. The ultimate goal of the evacuation planning is evacuate occupants rapidly from building fires to the safe areas. In this study, First, analyzed occupants load density and occupants characteristics in high-rise apartment buildings, Second, A evacuation safety performance of high-rise apartment buildings was analyzed with various typical floor plans. The purpose of this study is to figure out the evacuation characteristics in high-rise apartment buildings and improve countermeasure through comparative study on the Evacuation regulation and floor plans for High-rise Apartment buildings.

  • PDF

A Study on Problems of High-rise Building Fires in Korea and the Basic Directions for Fire Safety of High-rise Building Design (우리나라 고층건축화재의 문제점과 그 대책의 기본방향에 관한 연구)

  • 이강훈
    • Fire Science and Engineering
    • /
    • v.4 no.2
    • /
    • pp.15-26
    • /
    • 1990
  • Building become higher. larger and more complex than ever before, showing abrupt changes in building structures. forms and mechanical systems. Likewise hazads of fire and the scale of fire losses become more and more greater. Therefore. considerations for fire safety take up great portion of the building design process. In this study, problems of high-rise building fires and basic directions for fire safety of high-rise building design were studied through the statistical analysis of 138 fire cases. The results of this study are summarized as follows : ·Most of the fires in high-rise building occur on the low floors and the fire frequencies are very low on the upper floors. Fire casualties are liable to be more on the upper floors than on tile floor of fire origin. ·The important causes of evacuation failures were analyzed as being late in escape and lack of stairwell enclosures. ·The main cause of vertical fire spread is lack of stairwell enclosures. However, the fire spreads mainly through the enterior windows in apartment houses. The combustible materials in buildings act on as the major factors of horizontal fire spread and the improper fire doors play role of another the critical causes. ·The basic directions for fire safety of high-rise building design put much stress firstly on the compartmentation of the buildings effectively performing the provision of safe escape routes and the safe refuse places in buildings.

  • PDF

Case Study of Braced Wall System with High-strength Steel Pipe Strut (고강도 강관파이프 스트러트 흙막이공법 사례연구)

  • Shin, Jae-Min;Park, Hyun-Young;Joo, Jin-Kyu;Shin, Yoonseok;Kim, Gwang-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.19-20
    • /
    • 2012
  • According to develop urban area, the depth and floor area of basement tend to become deeper and larger. Excavation work for basement floor work is very important because its cost take 20% of total construction cost. Therefore, many studies of developing retaining wall system have performed for feasibility and safety in deep excavation work. In this study, new supporting system used high-strength pipe for retaining wall is introduced to reduce the construction cost and improve the safety and constructability by analyzing case study.

  • PDF

A Basic Study on the Fire Risk by Building Use based Growth Fire Statistics (성장화재통계 기반 건축물 용도별 화재위험도에 관한 기초연구)

  • Seo, Dong-Goo;Lee, Jong-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.218-219
    • /
    • 2020
  • The risk of a fire in a building is closely related to the usage of the building. In particular, all fires that occur in a building are not risky to safety of human life, and it is associated with the combustion area and the increase of total floor area of the building. Therefore, this study focused on safety of human life in terms of the statistics of fire with considering the aspect of growing fires and analyzed the statistical data of fire for 10 years. As for the analysis on fire, the time of occurrence by usages of buildings, frequency of occurrence and the ratio of casualties etc. were analyzed. It is expected that results of this study could be used for evaluations on a variety of parts in terms of design, construction and maintenance of buildings.

  • PDF

A Study on the Improvement of Performance Standard and Classification for the Firestop Accreditation System (내화충전구조 인정제도의 성능기준 및 등급분류 개선에 관한 연구)

  • Lee, H.D.;Choi, Y.J.;An, J.H.;Jeong, A.Y.;Seo, H.W.;Park, Jin O
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.4
    • /
    • pp.32-39
    • /
    • 2020
  • The fire compartments with fire-resistant construction are installed in the principal structural parts of a building in order to reduce damage in the event of a building fire. As a fire may spread through a crack in the fire compartment, the firestop with secured performance is used according to the procedure, methods, and standards specified in the detailed operation guideline. According to the current detailed operation guideline, vertical members (wall penetration) and horizontal members (floor penetration) are classified into different categories respective to each other for the classification of the firestop. Therefore, an accreditation applicant must apply for the performance test for each structure even if the wall and the floor have the same structure. Also, Grade T is used for the firestop that penetrates the fire compartment. However, in the case of foreign countries, the use of Grade F for the firestop is allowed even if it penetrates the fire compartment. The result of the precedent studies also showed that there was a significantly low possibility of fire to spread even if Grade F was applied for a metallic duct that penetrated the fire compartment. In this study, the improved scheme for the classification and performance standard of firestops was presented by analyzing the results of precedent studies regarding the firestop and domestic and overseas firestop qualification systems.

A Study on Evaluation of Horizontal Force of Non-structural Components Considering Predominant Periods of Seismic Waves (지진파 탁월주기를 고려한 비구조요소의 수평설계지진력 평가)

  • Oh, Sang Hoon;Kim, Ju Chan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.267-275
    • /
    • 2020
  • In the event of an earthquake, non-structural components require seismic performance to ensure evacuation routes and to protect lives from falling non-structural components. Accordingly, the seismic design code proposes horizontal force for the design and evaluation of non-structural components. Ground motion observed on each floor is affected by a building's eigen vibration mode. Therefore, the earthquake damage of non-structural components is determined by the characteristics of the non-structural component system and the vibration characteristics of the building. Floor response spectra in the seismic design code are estimated through time history analysis using seismic waves. However, it is difficult to use floor response spectra as a design criterion because of user-specific uncertainties of time history analysis. In addition, considering the response characteristics of high-rise buildings to long-period ground motions, the safety factor of the proposed horizontal force may be low. Therefore, this study carried out the horizontal force review proposed in the seismic design code through dynamic analysis and evaluated the floor response of seismic waves considering buildings and predominant periods of seismic waves.