• Title/Summary/Keyword: Safety monitoring

Search Result 2,888, Processing Time 0.034 seconds

Hygiene Monitoring of Food for Children's Foodservice Using the IoT-based Smart Food Safety Management System (iMEAL) (사물인터넷(IoT) 기반 스마트 급식안전관리시스템(iMEAL) 개발 및 이를 적용한 어린이 급식소용 음식의 위생모니터링)

  • Eun-Jin Lee;Sang-Hyeok Seo;Hye-Kyung Moon
    • Journal of the Korean Dietetic Association
    • /
    • v.30 no.1
    • /
    • pp.61-73
    • /
    • 2024
  • This report was prepared to introduce the developed Internet of Things (IoT)-based Smart Food Safety Management System (iMEAL) for children's foodservices registered in the Center for Children's Foodservice Management and report the results of hygiene monitoring through microbial analysis of two foods simulated and distributed based on this system. The program consisted of three menu screens: a foodservice management and meal inspection function, a refrigerator/freezer monitoring function, and a sanitary/safety inspection log function. Data such as cooking temperature, refrigerator and freezer temperature, salinity, and chlorine concentration were collected using IoT sensors or terminals, and hygiene safety inspection diary results (recorded by cooks) were transmitted to the Internet and stored. The APCs (3.78±0.07 log CFU/g) and E. coli (not detected) in stir-fried pork teriyaki sauce and the heating process met cooking standards. Similarly, the APCs (4.05±0.05 log CFU/g) and E. coli (not detected) in cucumber/chomuchim, which was not heated, also met cooking standards. APCs increased over time when cooked food was left for 1 hour, 1.5 hours, or 2 hours but remained acceptedable. Based on hygiene monitoring results of these two foods, using the i-MEAL system resulted in the safe production and distribution of children's food.

Assessment of Emitted Volatile Organic Compounds, Metals and Characteristic of Particle in Commercial 3D Printing Service Workplace (실제 3D 프린팅 작업장에서 발생하는 공기 중 유기화합물, 금속 및 입자특성 평가)

  • Kim, Sungho;Chung, Eunkyo;Kim, Seodong;Kwon, Jiwoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.2
    • /
    • pp.153-162
    • /
    • 2020
  • Objectives: 3D printing technologies have become widely developed and are increasingly being used for a variety of purposes. Recently, the evaluation of 3D printing operations has been conducted through chamber test studies, and actual workplace studies have yet to be completed. Therefore, the objective of this study was to determine the emission of volatile organic compounds(VOCs), metals, and particles from printing operations at a workplace. This included monitoring conducted at a commercial 3D printing service workplace where the processes involved material extrusion, material jetting, binder jetting, vat photo polymerization, and powder bed fusion. Methods: Area samples were collected with using a Tenax TA tube for VOC emission and MCE filter for metals in the workplace. For particle monitoring, Mini Particle Samplers(MPS) were also placed in the printer, indoor work area, and outdoor area. The objective was to analyze and identify particles' size, morphology, and chemical composition using transmission electron microscopy with energy dispersive spectroscopy(TEM-EDS) in the workplace. Results: The monitoring revealed that the concentration of VOCs and metals generated during the 3D printing process was low. However, it also revealed that within the 3D printing area, the highest concentration of total volatile organic compounds(TVOC) was 4,164 ppb at the vat photopolymerization 3D printing workplace, and the lowest was 148 ppb at the material extrusion 3D printing workplace. For the metals monitoring, chromium, which, is carcinogenic for humans, was detected in the workplace. As a characteristic of the particles, nano-sized particles were also found during the monitoring, but most of them were agglomerated with large and small particles. Conclusions: Based on the monitoring conducted at the commercial 3D printing operation, the results revealed that the concentration of VOCs and metals in the workplace were within Korea's occupational exposure limits. However, due to the emission of nano-sized particles during 3D printing operations, it was recommended that the exposure to VOCs and metals in the workplace should be minimized out of concern for workers' health. It was also shown that the characteristics of particles emitted from 3D printing operations may spread widely within an indoor workplace.

Advanced Structural Monitoring System Using Fiber Optic Sensors (광섬유 센서를 이용한 첨단 구조계측)

  • 김기수;김종우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.717-723
    • /
    • 2002
  • Recently, the interest in safety assessment of civil infrastructures is increasing in Korea. Especially, as bridge structures become large-scale, it is necessary to monitor and maintain the safety state of bridges, which requires the monitoring system that can make a long-term measurement during the service time of bridge. In this paper, advanced fiber optic sensors for long-term measurement, setup techniques of bridge monitoring system and the assessment of measured data are introduced. Attached or embedded optical fiber sensors to structural members of small and big structures including Sung San Bridge are surveyed. For the Sung San Bridge, the responses of the fiber optic sensors by 30 ton weigh truck loads with various speeds ate measured. Monitoring system is also applied to the mock-up of bridges. The monitoring capability of the advanced fiber optic sensor system was confirmed.

  • PDF

Selection and Analysis of Operating Parameters for Condition Monitoring of Emergency Diesel Generator at Nuclear Power Plant (원자력발전소 비상디젤발전기 상태감시를 위한 운전인자 선정에 관한 연구)

  • Park, J.H.;Choi, K.H.;Lee, S.G.;Park, J.E.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.3-8
    • /
    • 2007
  • The emergency AC power supply system of the nuclear power plant is designed to supply the power to the nuclear reactor at the emergency operating condition. The safety function of the diesel generator at the nuclear power plant is to supply AC electric power to the plant safety system whenever the preferred AC power supply is unavailable. The reliable operation of onsite emergency diesel generator should be ensured by a conditioning monitoring system designed to maintain and monitor and forecast the reliability level of diesel generator. To do this kind of diesel generator condition monitoring we reviewed several operating factors and history of the wolsong unit 3 diesel generator and selected the proper conditioning monitoring operating factors.

  • PDF

Shipping and Marine Meteorological Monitoring System for Safety Research (선박 안전을 위한 해양 기상 모니터링시스템 연구)

  • Ko, Young-Kyu;Lim, Sung-Hun;Park, Jin-Soo;Kim, Sung-Jun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.81-83
    • /
    • 2014
  • In recent years, owing to the irregular weather changes in the sailing vessels are needed for marine meteorological environmental counter measures. Marine meteorological monitoring system, information about these marine weather environments in real time around the coast by collecting a provides real time shipping and marine transportation safety is a system for. .. Long marine facilities marine observation sensors cover the routes developed by installing marine meteorological monitoring system, build management, and vessel safety is giving much help to navigate. The further development of the marine meteorological monitoring system analyzes the situation both at home and abroad, in order to study the safety of the vessel in navigable and marine accidents because the prevention and optimal marine meteorological monitoring system regarding the future development plan for discussion.

  • PDF

Copula entropy and information diffusion theory-based new prediction method for high dam monitoring

  • Zheng, Dongjian;Li, Xiaoqi;Yang, Meng;Su, Huaizhi;Gu, Chongshi
    • Earthquakes and Structures
    • /
    • v.14 no.2
    • /
    • pp.143-153
    • /
    • 2018
  • Correlation among different factors must be considered for selection of influencing factors in safety monitoring of high dam including positive correlation of variables. Therefore, a new factor selection method was constructed based on Copula entropy and mutual information theory, which was deduced and optimized. Considering the small sample size in high dam monitoring and distribution of daily monitoring samples, a computing method that avoids causality of structure as much as possible is needed. The two-dimensional normal information diffusion and fuzzy reasoning of pattern recognition field are based on the weight theory, which avoids complicated causes of the studying structure. Hence, it is used to dam safety monitoring field and simplified, which increases sample information appropriately. Next, a complete system integrating high dam monitoring and uncertainty prediction method was established by combining Copula entropy theory and information diffusion theory. Finally, the proposed method was applied in seepage monitoring of Nuozhadu clay core-wall rockfill dam. Its selection of influencing factors and processing of sample data were compared with different models. Results demonstrated that the proposed method increases the prediction accuracy to some extent.

SPSF : Smart Plant Safety Framework based on Reliable-Secure USN (차세대 USN기반의 스마트 플랜트안전 프레임워크 개발)

  • Jung, Ji-Eun;Song, Byung-Hun;Lee, Hyung-Su
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.9 no.3
    • /
    • pp.102-106
    • /
    • 2010
  • Recently process industries from oil and gas procedures and mining companies to manufactures of chemicals, foods, and beverages has been exploring the USN (Ubiquitous Sensor Networks) technology to improve safety of production processes. However, to apply the USN technology in the large-scale plant industry, reliability and security issues are not fully addressed yet, and the absence of the industrial sensor networking standard causes a compatibility problem with legacy equipment and systems. Although this situation, process industry such as energy plants are looking for the secure wireless plant solution to provide detailed, accurate safety monitoring from previously hard-reach, unaccordable area. In this paper, SPSF (Smart Plant Safety Framework based on Reliable-Secure USN) is suggested to fulfill the requirements of high-risk industrial environments for highly secure, reliable data collection and plant monitoring that is resistant to interference. The SPSF consists of three main layers: 1) Smart Safety Sensing Layer, 2) Smart Safety Network Layers, 3) Plant Network System Layer.

  • PDF

The effects of work environment monitoring organization's analysts' equipment and chemical substance incident response to the safety management awareness

  • Park, Hyun-A;Choi, Seo-Yeon;Rie, Dong-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.5
    • /
    • pp.97-103
    • /
    • 2017
  • In this paper, we propose a method to investigate the safety consciousness of a analyst incident response. This study conducted a statistical survey on 154 analysts who hired as expert in environment monitoring organizations in South Korea. The results of the analyses showed that respondents had good awareness on the equipment incident response and complied with laboratory safety regulations very well. Secondly, respondents were aware of the importance in the order of equipment incident response, an analytical laboratory incident response, and the cause of a chemical substance associated incident in an analytical laboratory in regarding the regulation compliance for creating a safe laboratory environment and the securement of laboratory safety. Therefore, (it was identified that) it would be necessary to create a safe environment and integrate a safety management system.

Status of the Real-time Safety Monitoring System of Hydrogen Refueling Station According to the Operation (수소충전소 실시간 이중 모니터링 시스템 운영을 통한 안전성 향상)

  • Lee, Jin-Woo;Park, Jong-Hee;Kim, Dae-Hyun;Tak, Song-Su;Yang, Byung-Jo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.92-97
    • /
    • 2021
  • In accordance with the revision of the Enforcement Regulations of the High-Pressure Gas Safety Management Act in February 2021, from August 27, 2021, the operation status of safety devices such as gas leak detection and alarm devices, emergency shut-off devices and flame detectors installed at hydrogen vehicle charging stations can be monitored in real time. It is transmitted and operated by the computer system managed by Korea Gas Safety Corporations. We intend to share the results of statistical analysis of abnormal signals that have occurred along with the results of the monitoring system construction so that they can be used for the safety management of hydrogen refueling stations, and to seek future safety management directions.

Assessment of correlation between markers of ambient monitoring and biological monitoring of dimethylformamide for workers in synthetic leather manufacturing factories in Korea (국내 합성피혁제조업 근로자에 대한 디메틸포름아미드의 공기중 농도와 생물학적 노출지표간의 상관성 평가)

  • Hwang, Yang In;Lee, Mi-Young;Chung, Yun Kyung;Kim, Eun A
    • Analytical Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.315-325
    • /
    • 2013
  • The possibility of acute hepatotoxicity caused by dimethylformamide (DMF) requires regular monitoring of the workers who are using DMF to prevent the occupational disease. The authors performed ambient and biological monitoring of workers involved in synthetic leather manufacturing processes using DMF to assess the correlation between the markers of ambient and biological monitoring of DMF. The authors monitored 142 workers occupationally exposed to DMF from 19 workshops in the synthetic leather and ink manufacturing industries located in northern region of Gyeonggi-do. The subjects answered questionnaire on work procedure and use of personal protective equipment to be classified by exposure type. DMF in air samples collected using personal air samplers, diffusive and active sampler, was analysed using gas chromatograph-flame ionization detector (GC-FID) with DB-FFAP column (length 30 m, i.d. 0.25 mm, film thickness 0.25 ${\mu}m$). Urinary N-methylformamide (NMF) was analysed using gas chromatograph-mass selective detector (GC-MSD) at selected ion monitoring (SIM) mode with DB-624 column (length 60 m, i.d. 0.25 mm, film thickness 1.40 ${\mu}m$). Geometric mean (GM) and geometric standard deviation (GSD) of the ambient DMF was $6.85{\pm}3.43$ ppm, and GM and GSD of urinary NMF was $42.3{\pm}2.7$ mg/L. The ratio of subjects with DMF level over 10 ppm was 44%, and those with urinary NMF over 15 mg/L was 87%. NMF in urine adjusted by DMF in air was $4.61{\pm}2.57$ mg/L/ppm and $9.50{\pm}2.41$ mg/L/ppm, respectively, with or without respirator. There was seasonal differences of NMF in urine adjusted by DMF in air, $7.63{\pm}2.74$ mg/L/ppm in summer and $4.53{\pm}2.29$ mg/L/ppm in winter. The urinary NMF concentration which corresponds to 10 ppm of ambient DMF was 52.7 mg/L (r=0.650, n=128). Considering the difference of the route of exposure which resulted from the compliance of wearing personal protective equipment, the estimated contribution of respiratory and dermal exposure route for DMF was 48.5% vs. 51.5%.