• Title/Summary/Keyword: Safety measure

Search Result 1,856, Processing Time 0.032 seconds

The effect of cristobalite on quantitative analysis of quartz in respirable dust by FTIR direct-on-filter method (직접필터법을 이용하여 호흡성 분진내 석영을 정량분석할 때 크리스토바라이트가 미치는 영향)

  • Phee, Young Gyu;Roh, Young-Man;Kim, Hyun Wook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.17 no.1
    • /
    • pp.21-30
    • /
    • 2007
  • To establish the Fourier-transform infra-red spectrophotometry (FTIR) direct-on-filter(DOF) technique as a useful analytical method for quartz in respirable dust samples, influence of the interference should be corrected. This study was designed to compare three methods of correction for cristobalite when quantifying the content of quartz, including the least square, the optimum choice and the spectral subtraction methods. Respirable dust, created in a dust chamber containing the standard material of quartz, cristobalite was collected using a cyclone equipped with a 25 mm, $0.8{\mu}m$ pore size DM filter as a collection medium. The quartz weights overestimated about 100% when mixed of cristobalite by measure using 799 cm-1 absorption peak of quartz. The quartz weights appeared over estimated by optimum choice, spectral subtraction and least square method in mixtures of 33% cristobalite were 90.3%, 60.1% and about 4.3%, respectively. The least square method have been adopted to correction methods of cristobalite and satisfactory results have been obtained. The results of this study suggest that, when correcting for effect of cristobalite on quantitative analysis of quartz in respirable dust by FTIR direct-on-filter method, the least square method produce the most unbiased results compared with those of other correction methods.

Development of Cyber Security Assessment Methodology for the Instrumentation & Control Systems in Nuclear Power Plants (원전 계측제어시스템에 대한 사이버보안성 평가 방법론 개발)

  • Kang, Young-Doo;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3451-3457
    • /
    • 2010
  • Cyber security assessment is the process of determining how effectively an entity being assessed meets specific cyber security objectives. Cyber security assessment helps to measure the degree of confidence one has and to identify that the managerial, technical and operational measures work as intended to protect the I&C systems and the information it processes. Recently, needs for cyber security on digitalized nuclear I&C systems are increased. However the overall cyber security program, including cyber security assessment, is not established on those systems. This paper presents the methodology of cyber security assessment which is appropriate for nuclear I&C systems. This methodology provides the qualitative assessments that may formulate recommendations to bridge the security risk gap through the incorporated criteria. This methodology may be useful to the nuclear organizations for assessing the weakness and strength of cyber security on nuclear I&C systems. It may be useful as an index to the developers, auditors, and regulators for reviewing the managerial, operational and technical cyber security controls, also.

Critical Review on Carcinogenicity of Metalworking Fluids (절삭유(Metalworking Fluids)의 발암성에 대한 고찰)

  • 박동욱;윤충식;이송권
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.50-62
    • /
    • 2003
  • Exposure to metalworking fluids (MWFs) has significantly been associated with cancer developed in multi-organs, respiratory diseases and skin diseases. Several carcinogens to humans or animals are contained in MWFs. They have been reported to be mineral oils, polynuclear aromatic hydrocarbons (PAHs), formaldehyde and N-nitrosodiethanolamine (NDELA). The great hazards of MWF have forced the advanced country including United States to regulate carcinogens contained in MWF. In 2001, American Conference of Governmental Industrial Hygienists (ACGIHs) regarded MWF mist as suspected carcinogen to human (A2) and added it to “Notice of Intended Change (NIC)” list of 2001. In spite of the fact that much MWF has widely been used in many industries using machines, Korea has no legal actions for management of MWF. What is worse, even toxicity such as Carcinogenicity has not been reported. KS (Korean Standards) lists 7 advices of MWF but it does net state the hazards to health. It is very hard to control or minimize worker's exposure to MWF containing many carcinogens. Prier to the introduction of MWF to workplace, it is the most effective measure to regulate carcinogens below a certain level. Regulation on the content of PAH seems to be necessary because less amount of PAH in mineral oils improves the quality of MWF. Also, addition of nitrosating groups to MWF should be prohibited to minimize worker's exposure to NDELA. Employers and manufacturers should indicate the Carcinogenicity of all carcinogens in MWFs in Material Safety Data Sheets (MSDS) in order fer workers to recognize Carcinogenicity. Legal actions have to be taken to protect workers from health hazards due to exposure to MWF by further investigation on MWF.

A Study on the User Satisfaction for Park Facilities in Bukhansan National Park through the Analysis of Expectancy-Result Disconfirmation (기대-성과 불일치 분석을 통한 북한산 국립공원 탐방객의 시설물 이용 만족도 연구)

  • Song Byeong-Hwa;Yang Byoung-E;Lee Gwan-Gyu
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.2 s.115
    • /
    • pp.44-56
    • /
    • 2006
  • The purpose of this study was to analyze user satisfaction for park facilities in Bukhansan National Park and to introduce a new framework of standards for facilities improvement. An initial theoretical model considered possible variables through a case study of user satisfaction for park facilities and eventually 19 variables were chosen. An analysis was conducted of the user's satisfaction based on their expectations before use and the results after use. This expectancy-result disconfirmation was measured for the 19 variables. Statistical methods were applied to determine the reliability of the analysis, the t-test was used to measure disconfirmation between expectations and results, and relationships between the variables were analyzed. The results of the reliability analysis (Cronbach's alpha) were higher than 0.8. Therefore, almost all variables were appropriate for analysis. Statistically significant differences were found between expectations and results for following variables: availability of information facilities and accessibility, convenience of facilities, number of information facilities, appropriateness of information facilities, information offered, safety and convenience. Based on the analysis of the interrelation between variables, it was found that the visitors were more satisfied after their visit than they expected to be. The results of the study suggest which variables make the greatest contributions to facilities maintenance or improvement and which can be adapted to maximize user satisfaction.

A Study on Optimal Design for Linear Electromagnetic Generator of Electricity Sensor System using Vibration Energy Harvesting (진동에너지 하베스팅을 이용한 전력감지시스템용 리니어 전자기 발전기에 관한 최적설계)

  • Cho, Seong Jin;Kim, Jin Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.7-15
    • /
    • 2017
  • Recently, an electricity sensor system has been installed and operated to prevent failures and accidents by identifying whether a transformer is normal in advance of failure. This electricity sensor system is able to both measure and monitor the transformer's power and voltage remotely and send information to a manager when unusual operation is discovered. However, a battery is required to operate power detection devices, and battery systems need ongoing management such as regular replacement. In addition, at a maintenance cost, occasional human resources and worker safety problems arise. Accordingly, we apply a linear electromagnetic generator using vibration energy from a transformer for an electric sensor system's drive in this research and we conduct optimal design to maximize the linear electromagnetic generator's power. We consider design variables using the provided design method from Process Integration, Automation, and Optimization (PIAnO), which is common tool from process integration and design optimization (PIDO). In addition, we analyze the experiment point from the design of the experiments using "MAXWELL," which is a common electromagnet analysis program. We then create an approximate model and conduct accuracy verification. Finally, we determine the optimal model that generates the maximum power using the proven approximate kriging model and evolutionary optimization algorithm, which we then confirm via simulation.

Development of EIS Evaluation Method about PEMFC 1kW STACK (가정용 연료전지 스택의 EIS 평가 기법 개발)

  • Park, Chaneom;Han, Woonki;Jung, Jinsu;Ko, Wonsik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.100.1-100.1
    • /
    • 2011
  • Electrochemical impedance spectroscopy(EIS) are using widely as a useful technique mainly in the field of electrochemical for the analysis of electrode reactions or characteristics of the composites. The response analysis of the systems technique provides comprehensive informations about the characteristic and structure of complex and internal reaction. The EIS is the method to measure impedance of the measurement target classified by the frequency, it select the equivalent impedance model to give same response from the result and it calculate the parameter. Therefore, the chemical reaction inside the fuel cell is to modeling to electrical impedance. And as repeating the same experiment in each of the operating point, we can get each different parameter. As a result, we can establish the equivalent impedance model in each operating point. Therefore, if we use these models, we can evaluate the fuel cell without the internal design parameter of the fuel cell as required in existing modeling. The EIS is used typically technique for distinguish status of fuel cell called SOH(State Of Health). When the fuel cell is degradation, Efficiency and health of the fuel cell is reduced because internal impedance is increase. As usage of these principles, we can evaluate state of fuel cell through the impedance analysis of fuel cells. In this study, we are presents EIS distinction system and algorithm for residential fuel cell systems. At the time of the fuel cell installation in the fields, the EIS system and proposed algorithm will be able to apply as technique for efficiency and performance evaluation about fuel cell system.

  • PDF

The Development of Straddle Packer Hydraulic Testing Equipment to Characterize Permeability in Deep Boreholes (장심도 시추공 정밀수리시험 장비 구축)

  • Kim, Kyung-Su;Park, Kyung-Woo;Ji, Sung-Hoon
    • The Journal of Engineering Geology
    • /
    • v.20 no.2
    • /
    • pp.213-220
    • /
    • 2010
  • The permeability characterization on the natural barrier for deep geological disposal of radioactive waste is very critical to evaluate total safety and performance assessment of disposal site. However, the confidence level in using previous hydraulic testing equipments consist of simple components to estimate rock mass permeability is not high enough to reflect in situ condition. The purpose of this research is to establish an advanced hydraulic testing equipment, which is applicable to deep borehole (up to 1,000 m), through the improvement of technical problems of previous packer systems. Especially, the straddle packer hydraulic testing equipment was designed to adopt both the hydraulic downhole shut-in valve(H-DHSIV) to minimize the wellbore storage effect and the real time data acquisition system to measure the pressure changes of test interval including its upper and lower parts. The results from this research lead to not only improve current technical level in the field of hydraulic testing but also provide important information to radioactive waste disposal technology development and site characterization project.

Quantitative Evaluation of Concrete Damage by X-ray CT Methods (마이크로 포커스 X-ray CT를 이용한 콘크리트 손상균열의 정량적 평가)

  • Jung, Jahe
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.455-463
    • /
    • 2018
  • This study developed a method to quantitatively measure the size of cracks in concrete using X-ray CT images. We prepared samples with a diameter of 50 mm and a length of 100 mm by coring cracked concrete block that was obtained by chipping. We used a micro-focus X-ray CT, then applied the 3DMA method (3 Dimensional Medial axis Analysis) to the 3D CT images to find effective parameters for damage assessment. Finally, we quantitatively assessed the damage based on sample locations, using the damage assessment parameter. Results clearly show that the area near the chipping surface was damaged to a depth of 3 cm. Furthermore, X-ray methods can be used to evaluate the porosity index, burn number, and medial axis, which are used to estimate the damage to the area near the chipping surface.

A correlation method for high-frequency response of a cargo during dry transport in high seas

  • Vinayan, Vimal;Zou, Jun
    • Ocean Systems Engineering
    • /
    • v.6 no.2
    • /
    • pp.143-159
    • /
    • 2016
  • Cargo, such as a Tension Leg Platform (TLP), Semi-submersible platform (Semi), Spar or a circular Floating Production Storage and Offloading (FPSO), are frequently dry-transported on a Heavy Lift Vessel (HLV) from the point of construction to the point of installation. The voyage can span months and the overhanging portions of the hull can be subject to frequent wave slamming events in rough weather. Tie-downs or sea-fastening are usually provided to ensure the safety of the cargo during the voyage and to keep the extreme responses of the cargo, primarily for the installed equipment and facilities, within the design limits. The proper design of the tie-down is dependent on the accurate prediction of the wave slamming loads the cargo will experience during the voyage. This is a difficult task and model testing is a widely accepted and adopted method to obtain reliable sea-fastening loads and extreme accelerations. However, it is crucial to realize the difference in the inherent stiffness of the instrument that is used to measure the tri-axial sea fastening loads and the prototype design of the tie-downs. It is practically not possible to scale the tri-axial load measuring instrument stiffness to reflect the real tie-down stiffness during tests. A correlation method is required to systematically and consistently account for the stiffness differences and correct the measured results. Direct application of the measured load tends to be conservative and lead to over-design that can reflect on the overall cost and schedule of the project. The objective here is to employ the established correlation method to provide proper high-frequency responses to topsides and hull design teams. In addition, guidance for optimizing tie-down design to avoid damage to the installed equipment, facilities and structural members can be provided.

A Study on the Development of Shaft Power Measuring System (축계 마력 측정 시스템의 개발에 관한 연구)

  • Nam, T.K.;Lee, D.C.;Roh, Y.O.;Heo, G.S.;Choi, G.J.
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.05a
    • /
    • pp.213-216
    • /
    • 2006
  • In this paper a development of shaft power measuring system for a small vessel is discussed. It is important that the exact power measurement of marine engine which is used for ship's propulsion since the engine power is related to ship's usage and its shaft design. Two gearwheel and magnetic sensors are adopted to measure torsional angle on the shaft. High resolution encoder is also applied to compensate the output signal from gearwheel. The calculation of shaft power is executed using measured signal and angular velocity of rotating machine and the result is plotted on the monitoring screen.

  • PDF