• Title/Summary/Keyword: Safety Maneuverability

Search Result 67, Processing Time 0.029 seconds

A Research of the Development Plan for a Highly Adaptable FSR (Fire Safety Robot) in the Scene of the Fire (화재현장에 적합한 소방방재로봇의 개발 방향 탐색)

  • Kim, Kook-Rae;Kim, Jin-Taek
    • Fire Science and Engineering
    • /
    • v.24 no.3
    • /
    • pp.113-118
    • /
    • 2010
  • FSR has been placed and operated in the Daegu Fire & Safety Department on a trial basis since September 2009. This research proposes a direction for developing the robot, which will provide greater field adaptability and efficiency through analyzing in-depth interviews and surveys of firefighters who have operated the robot. Analysis has shown that an Assistant FSR is expected to enhance maneuverability and improve the performance of wheels, which will increase the capacity for navigating obstacles. The Field FSR needs improvements in convenience of control, making the weight lighter, and stabilization of radio communications to eliminate tangled wires. Overall satisfaction regarding the performance of robots currently in operation is low, while preference toward using the Assistant robot in the field is also low, shown at 8.4%. Therefore, it is urgently necessary to vitalize usage of FSR in the field so that early commercialization of the FSR will contribute to reinforce both growth and competitiveness of the domestic robotics industry.

Flow Visualization and PIV Analysis around a 2-Dimensional Flapped Foil (균일 흐름 중에 놓인 2차원 가변익 주위의 유동가시화 및 PIV 해석)

  • Oh, Kyoung-Gun;Choi, Hee-Jong;Lee, Gyoung-Woo;Choi, Min-Son;Lee, Seung-Keon
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2005.05a
    • /
    • pp.62-69
    • /
    • 2005
  • Maneuverability of ships has been receiving a great deal of attention both concerning navigation safety and the prediction of ship maneuvering characteristics, to improve it. High-lift device could be applied to design of rudder at design stage. Now, we carried out the flow visualization and inversitgation of flow around a flap rudder (trailing-edge flap). Flow visualization results of flap defection shown as the flow around a NACA0020 Flap Rudder will be conducted in a Circulating Water Channel. The purpose of this investigation will be to investigate the development of the separation region on the flap rudder with the variation of angle of attack and determine the angle of attack at which the flow separates and reattaches.

  • PDF

A Study on Proposed New Consideration Factors in Channel Design Process

  • Park, Young-Soo;Lee, Hyong-Ki
    • Journal of Navigation and Port Research
    • /
    • v.27 no.6
    • /
    • pp.661-667
    • /
    • 2003
  • There are certain guidelines on the channel design such as domestic guidelines(Korean and japanese, etc.)and international guideline known as PIANC Rules(Permanent International Association of Navigation Congresses Rules), in the world These rules have considered many factors such as natural conditions, ship maneuverability and geographical features etc. But it is contented toot the area of these rules toot are meant to facilitate the ease of ship-handling is insufficient. To satisfy this point in design process, it is necessary to take into account the difficulties encountered in ship-handling within these inland waterways. Because many vessels are navigating at the same time within these waterways, the specific navigable traffic volume should be considered with regard to the standard process of route designing. It must also be considered with regard to the volume of navigable traffic bemuse of ship-handling difficulty toot arises within the same waterway with varying amounts of traffic volume because toot ship-handling/manueverability is directly influenced by these factors. This paper aims to propose a new approach to the design of standard inland water route considering the traffic volume and the shape of waterway. Also consider the relationship among these factors may affect to the ship-handling difficulties.

The Types of Road Weather Big Data and the Strategy for Their Use: Case Analysis (도로 기상 빅데이터 유형별 활용 전략: 국내외 사례 분석)

  • Hahm, Yukun;Jun, YongJoo;Kim, KangHwa;Kim, Seunghyun
    • The Journal of Bigdata
    • /
    • v.2 no.2
    • /
    • pp.129-140
    • /
    • 2017
  • Weather acts through low visibility, precipitation, high winds, and temperature extremes to affect driver capabilities, vehicle performance (i.e., traction, stability and maneuverability), pavement friction, roadway infrastructure, crash risk, traffic flow, and agency productivity. Recently a variety of road weather big data sources such as CCTV, road sensor/systems, car sensor have been developed to solve the weather-related problems, This study identifies and defines the types and characteristics of these sources to suggest how to utilize them for car safety and efficiency as well as road management through analyzing domestic and oversea cases of road weather big data applications.

  • PDF

Integrated Chassis Control for the Driving Safety (주행 안전을 위한 통합 샤시 제어)

  • Cho, Wan-Ki;Yi, Kyong-Su;Chang, Nae-Hyuck
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.646-654
    • /
    • 2010
  • This paper describes an integrated chassis control for a maneuverability, a lateral stability and a rollover prevention of a vehicle by the using of the ESC and AFS. The integrated chassis control system consists of a supervisor, control algorithms and a coordinator. From the measured and estimation signals, the supervisor determines the vehicle driving situation about the lateral stability and rollover prevention. The control algorithms determine a desired yaw moment for lateral stability and a desired longitudinal force for the rollover prevention. In order to apply the control inputs, the coordinator determines a brake and active front steering inputs optimally based on the current status of the subject vehicle. To improve the reliability and to reduce the operating load of the proposed control algorithms, a multi-core ECU platform is used in this system. For the evaluation of this system, a closed loop simulations with driver-vehicle-controller system were conducted to investigate the performance of the proposed control strategy.

다방향 규칙파 중 선체, 타, 추진기에 작용하는 유체력 추정을 위한 실험적 연구

  • Seo, Ju-Won;;;;Jeon, Myeong-Jun;Yun, Hyeon-Gyu;Kim, Yeon-Gyu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.4-6
    • /
    • 2018
  • Traditional methods of research on ship maneuvering performance were estimated in calm water. Ship maneuverability in waves is of vital importance for navigation safety of a ship (ITTC, 2008). The accurate estimation of force and moment acting on the ship and rudder behind propeller are necessary because the rudder, propeller and hull interaction is of key importance. In addition, course-keeping ability and maneuvering performance of a ship can be significantly affected by the presence of wave. In this study, the model test is performed in the regular wave in the square wave tank in Changwon National University and the hydrodynamic force acting on the ship hull and rudder behind the propeller in various wave directions is investigated. The effect of wavelength and wave direction on hydrodynamic force acting on ship and rudder behind propeller in regular waves is discussed.

  • PDF

Method of Conducting and Verification for Failure Mode Effect Test of Rotary Automatic Flight Control System Software (회전익 자동비행제어시스템 소프트웨어의 FMET 수행 및 검증 방안)

  • Yeom, WooSung;Ha, Seokwun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.1
    • /
    • pp.55-62
    • /
    • 2020
  • It is necessary to develop digital flight control system by digital control technology to ensure stability and maneuverability of rotary helicopter. It is important to meet functional requirements of helicopter flight control system OFP and verify system reliability directly linked to flight safety as a core technology that avoids the transfer of technology by overseas advanced helicopter manufacturer. In this paper, we studied how to perform FMET for operational flight program of rotary automatic flight control system.

A Review of Rear Axle Steering System Technology for Commercial Vehicles

  • Khan, Haroon Ahmad;Yun, So-Nam;Jeong, Eun-A;Park, Jeong-Woo;Yoo, Chung-Mok;Han, Sung-Min
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.152-159
    • /
    • 2020
  • This study reviews the rear or tag axle steering system's concepts and technology applied to commercial vehicles. Most commercial vehicles are large in size with more than two axles. Maneuvering them around tight corners, narrow roads, and spaces is a difficult job if only the front axle is steerable. Furthermore, wear and tear in tires will increase as turn angle and number of axles are increased. This problem can be solved using rear axle steering technology that is being used in commercial vehicles nowadays. Rear axle steering system technology uses a cylinder mounted on one of rear axles called a steering cylinder. Cylinder control is the primary objective of the real axle steering system. There are two types of such steering mechanisms. One uses master and slave cylinder concept while the other concept is relatively new. It goes by the name of smart axle, self-steered axle, or smart steering axle driven independently from the front wheel steering. All these different types of steering mechanisms are discussed in this study with detailed description, advantages, disadvantages, and safety considerations.

Arachnoid Remodeling by Clipping Technique Facilitates Surgical Maneuverability during Transsphenoidal Surgery for Pituitary Macroadenoma

  • Kim, Eui Hyun;Park, Soo Jeong;Na, Minkyun;Moon, Ju Hyung;Kim, Sun Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.4
    • /
    • pp.591-597
    • /
    • 2022
  • Objective : Pituitary adenomas frequently extend into the suprasellar space. After a suprasellar tumor is removed, the superiorly extended arachnoid becomes redundant and sinks down into the intrasellar space which often hiders visualization and accessibility to the hidden space behind the evaginated arachnoid. We introduced arachnoid remodeling by clipping technique, and evaluated its usefulness and safety during TSS. Methods : Total 223 patients who underwent arachnoid remodeling with our new clipping technique were included. Redundant arachnoid was clipped along the dural edge with multiple 2.6-mm titanium clips until the redundant arachnoid membrane no longer blocked the surgical route. To check for possible deterioration of hormonal function by this technique, we assessed anterior pituitary function of 166 patients who underwent arachnoid remodeling by clipping and compared this with those of other 429 control patients. Results : Our technique greatly enhanced the accessibility and visualization of intrasellar and parasellar spaces, both of which are generally hindered by redundant arachnoid during transsphenoidal surgery (TSS). We found no difference in anterior pituitary function between a clip-assisted arachnoid remodeling group and the control group, implying that this technique does not result in hypopituitarism. Conclusion : During TSS for pituitary adenomas with suprasellar extension, arachnoid remodeling by clipping technique is very useful and convenient for the management of the redundant arachnoid membrane to enhance visualization and surgical accessibility.

Study on the Development of the Maneuvering Mathematical Model Considering the Large Angle Motion of Submarine

  • Jae Hyuk Choi;Sungwook Lee;Jinhyeong Ahn
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.81-88
    • /
    • 2023
  • Maneuverability is a crucial factor for the safety and success of submarine missions. This paper introduces a mathematical model that considers the large drift and angle of attack motions of submarines. Various computational fluid dynamics (CFD) simulations were performed to adapt Karasuno's fishery vessel maneuvering mathematical model to submarines. The study also presents the procedure for obtaining the physics-based hydrodynamic coefficients proposed by Karasuno through CFD calculations. Based on these coefficients, the reconstructed forces and moments were compared with those obtained from CFD and to the hydrodynamic derivatives expressed by a Taylor expansion. The study also discusses the mathematical maneuvering model that accounts for the large drift angles and angles of attack of submarines. The comparison results showed that the proposed maneuvering mathematical model based on modified Karasno's model could cover a large range of motions, including horizontal motion and vertical motions. In particular, the results show that the physics-based mathematical maneuvering model can represent the forces and moments acting on the submarine hull during large drift and angle of attack motions. The proposed mathematical model based on the Karasuno model could obtain more accurate results than the Taylor third-order approximation-based mathematical model in estimating the hydrodynamic forces acting on submarines during large drift and angle of attack motions.