• 제목/요약/키워드: Safety Directorate

검색결과 45건 처리시간 0.017초

Prevention of Occupational Diseases in Turkey: Deriving Lessons From Journey of Surveillance

  • Sen, Seyhan;Barlas, GulSen;YakiStiran, Selcuk;Derin, ilknur G.;Serifi, Berna A.;Ozlu, Ahmet;Braeckman, lutgart;laan, Gert van der;Dijk, Frank van
    • Safety and Health at Work
    • /
    • 제10권4호
    • /
    • pp.420-427
    • /
    • 2019
  • Introduction: To prevent and manage the societal and economic burden of occupational diseases (ODs), countries should develop strong prevention policies, health surveillance and registry systems. This study aims to contribute to the improvement of OD surveillance at national level as well as to identify priority actions in Turkey. Methods: The history and current status of occupational health studies were considered from the perspective of OD surveillance. Interpretative research was done through literature review on occupational health at national, regional and international level. Analyses were focused on countries' experiences in policy development and practice, roles and responsibilities of institutions, multidisciplinary and intersectoral collaboration. OD surveillance models of Turkey, Belgium and the Netherlands were examined through exchange visits. Face-to-face interviews were conducted to explore the peculiarities of legislative and institutional structures, the best and worst practices, and approach principles. Results: Some countries are more focused on exploring OD trends through effective and cost-efficient researches, with particular attention to new and emerging ODs. Other countries try to reach every single case of OD for compensation and rehabilitation. Each practice has advantages and shortcomings, but they are not mutually exclusive, and thus an effective combination is possible. Conclusion: Effective surveillance and registry approaches play a key role in the prevention of ODs. A well-designed system enables monitoring and assessment of OD prevalence and trends, and adoption of preventive measures while improving the effectiveness of redressing and compensation. A robust surveillance does not only provide protection of workers' health but also advances prevention of economic losses.

A Simple Proposition for Improving Industrial Hygiene Air Sampling Methods

  • Paik, Samuel Y.;Zalk, David M.
    • Safety and Health at Work
    • /
    • 제10권3호
    • /
    • pp.389-392
    • /
    • 2019
  • When conducting an exposure assessment, the primary goal of the industrial hygienist is to fully characterize the worker's exposure during a work shift to compare it with an occupational exposure limit. This applies regardless of the duration of the work activity as an activity that is relatively short in duration can still present exposure in excess of the occupational exposure limit even when normalized over an 8-hr shift. This goal, however, is often impeded by the specification of a minimum sample volume in the published sampling method, which may prevent the sample from being collected or submitted for analysis. Removing the specification of minimum sample volume (or adjusting it from a requirement to a recommendation), in contrast, allows for a broader assessment of jobs that consist of short-duration and high-exposure activities and also eliminates the unnecessary practice of running sampling pumps in clean air to collect a specified, minimum volume.

A Study on a Radar Absorbing Structure for Aircraft Leading Edge Application

  • Baek, Sang Min;Lee, Won Jun;Joo, Young Sik
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권2호
    • /
    • pp.215-221
    • /
    • 2017
  • An electromagnetic (EM) wave absorber reduces the possibility of radar detection by minimizing the radar cross section (RCS) of structures. In this study, a radar absorbing structure (RAS) was applied to the leading edge of a blended wing body aircraft to reduce RCS in X-band (8.2~12.4GHz) radar. The RAS was composed of a periodic pattern resistive sheet with conductive lossy material and glass-fiber/epoxy composite as a spacer. The applied RAS is a multifunctional composite structure which has both electromagnetic (EM) wave absorbing ability and load-bearing ability. A two dimensional unit absorber was designed first in a flat-plate shape, and then the fabricated leading edge structure incorporating the above RAS was investigated, using simulated and free-space measured reflection loss data from the flat-plate absorber. The leading edge was implemented on the aircraft, and its RCS was measured with respect to various azimuth angles in both polarizations (VV and HH). The RCS reduction effect of the RAS was evaluated in comparison with a leading edge of carbon fabric reinforced plastics (CFRP). The designed leading edge structure was examined through static structural analysis for various aircraft load cases to check structural integrity in terms of margin of safety. The mechanical and structural characteristics of CFRP, RAS and CFRP with RAM structures were also discussed in terms of their weight.

CHARACTERISTICS OF SELF-LEVELING BEHAVIOR OF DEBRIS BEDS IN A SERIES OF EXPERIMENTS

  • Cheng, Songbai;Yamano, Hidemasa;Suzuki, TYohru;Tobita, Yoshiharu;Nakamura, Yuya;Zhang, Bin;Matsumoto, Tatsuya;Morita, Koji
    • Nuclear Engineering and Technology
    • /
    • 제45권3호
    • /
    • pp.323-334
    • /
    • 2013
  • During a hypothetical core-disruptive accident (CDA) in a sodium-cooled fast reactor (SFR), degraded core materials can form roughly conically-shaped debris beds over the core-support structure and/or in the lower inlet plenum of the reactor vessel from rapid quenching and fragmentation of the core material pool. However, coolant boiling may ultimately lead to leveling of the debris bed, which is crucial to the relocation of the molten core and heat-removal capability of the debris bed. To clarify the mechanisms underlying this self-leveling behavior, a large number of experiments were performed within a variety of conditions in recent years, under the constructive collaboration between the Japan Atomic Energy Agency (JAEA) and Kyushu University (Japan). The present contribution synthesizes and gives detailed comparative analyses of those experiments. Effects of various experimental parameters that may have potential influence on the leveling process, such as boiling mode, particle size, particle density, particle shape, bubbling rate, water depth and column geometry, were investigated, thus giving a large palette of favorable data for the better understanding of CDAs, and improved verifications of computer models developed in advanced fast reactor safety analysis codes.

접촉점화성 추진제 안전기준 및 상호반응성 분석 (Analysis of Safety Regulation and Chemical Reactivity of Hypergolic Propellant)

  • 이응우;신안태;조상연;박병문
    • 한국가스학회지
    • /
    • 제27권3호
    • /
    • pp.108-115
    • /
    • 2023
  • 하이드라진은 우수한 액체추진제이지만 독성과 반응성이 높아 저장 및 취급 시 주의가 요구된다. 발사장 안전을 확보하기 위해서는 화학물질의 누출로 인한 상호반응성을 고려한 안전지침을 수립하여야 한다. 본 연구에서는 해외 발사장의 하이드라진 충전시설 현황에 대해서 조사하고 저장 및 취급과 관련된 안전기준을 검토하였으며, 발사장에서 주로 취급되는 화학물질과 위험물안전관리법상 유별 혼재기준에 따라 혼합 보관이 가능한 물질을 선정하여 하이드라진과의 상호반응성을 분석하였다. 분석 결과 발사장에서 취급되는 화학물질에는 연료유를 제외하고는 상호반응성이 있는 것으로 분석되었으며 혼재가 가능한 위험물과도 상호반응성이 있는 것으로 나타났다. 그렇기 때문에 발사장에 하이드라진 전용의 저장소 구축이 필요함을 강조하며, 충전작업 중에는 저장용기와 처리 장비에 사용되는 물질과의 상호반응성을 피하기 위한 세심한 관리의 중요성을 강조한다. 이러한 분석 결과를 바탕으로 발사장에서 하이드라진 저장 보관 및 취급 시 발사장 안전을 확보하기 위한 기초자료로 활용할 예정이다.

Safety factor calibration for bridge concrete girders

  • Silva, Rita C.;Cremona, Christian
    • Structural Engineering and Mechanics
    • /
    • 제49권2호
    • /
    • pp.163-182
    • /
    • 2014
  • Safety factors proposed in codes CEB, B.A.E.L 91 and EUROCODE 1 cover a great number of uncertainties; making them inadequate for the assessment of existing structures. Suitable safety factors are established using a probabilistic assessment, once real dimensions, materials strength and existing structures deterioration mechanisms are taken into account. This paper presents a calibration method for safety factors using a typical set of RC bridges in France. It considers the principal stages of corrosion provoked by $CO_2$ and $Cl^-$ penetration and threshold indexes (${\beta}_0$) for existing structures. Reliability indexes are determined by the FORM method in the calibration method.

The volcanic aspect on determining Site of nuclear power plant in Indonesia: Gap analysis between standard and regulations

  • Widjanarko;Budi Santoso;Rismiyanto;Kurnia Anzhar;Joko Waluyo;Gustini H. Sayid;Khusnul Khotimah;Nicholas Bertony Saputra;Agus Teguh Pranoto;Hadi Suntoko;Siti Alimah;Sriyana;Roni Cahya Ciputra;Alfitri Meliana
    • Nuclear Engineering and Technology
    • /
    • 제56권7호
    • /
    • pp.2875-2880
    • /
    • 2024
  • The development of nuclear power plants is in three phases. The first phase is a consideration before the decision on the NPP construction program is approved, the second phase is the preparatory work for making contracts and preparing for the construction of NPP after the NPP construction policy is approved, and the third phase is contracting, licensing and building the first NPP. As a volcanically active country, Indonesia contains over 130 active volcanoes that are part of the Pacific Ring of Fire. The volcanic aspect is one of the safety factors considered while deciding the location of an NPP. Research on the potential of natural external risks to the determination of nuclear power plants in Indonesia, including the volcanic aspect, has been conducted based on the safety reference or safety guide of the IAEA and the Nuclear Energy Regulatory Body (BAPETEN) Regulation. Due to technological advancements, safety needs have evolved so the existing Indonesia National Standard (SNI) must be updated to comply with BAPETEN regulations. The substance in SNI 18-2034-1990 relating to volcanic features seems less relevant in actual conditions, given that more complete and exact criteria for determining a site guarantee the safety and health of residents and surrounding the environment site. The study intends to conduct a gap analysis of volcanic issues in SNI and volcanic regulations. The method used is identification requirements for volcanic aspects in SNI 18-2034-1990 about Determining Site of Nuclear Reactor Guidance with BAPETEN Chairman Regulation (BCR) number 4 of 2018 about Nuclear Installation Site Evaluation Safety Provisions and BCR number 5 of 2015 about Evaluation of Nuclear Installation Sites for Volcanic Aspects, and analysis uses a qualitative method of inductive techniques. The outcome of this research applies to suggesting a revision of SNI number 18-2034-1990, especially the volcanic aspect.

Assessment of INSPYRE-extended fuel performance codes against the SUPERFACT-1 fast reactor irradiation experiment

  • L. Luzzi;T. Barani;B. Boer;A. Del Nevo;M. Lainet;S. Lemehov;A. Magni;V. Marelle;B. Michel;D. Pizzocri;A. Schubert;P. Van Uffelen;M. Bertolus
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.884-894
    • /
    • 2023
  • Design and safety assessment of fuel pins for application in innovative Generation IV fast reactors calls for a dedicated nuclear fuel modelling and for the extension of the fuel performance code capabilities to the envisaged materials and irradiation conditions. In the INSPYRE Project, comprehensive and physics-based models for the thermal-mechanical properties of U-Pu mixed-oxide (MOX) fuels and for fission gas behaviour were developed and implemented in the European fuel performance codes GERMINAL, MACROS and TRANSURANUS. As a follow-up to the assessment of the reference code versions ("pre-INSPYRE", NET 53 (2021) 3367-3378), this work presents the integral validation and benchmark of the code versions extended in INSPYRE ("post-INSPYRE") against two pins from the SUPERFACT-1 fast reactor irradiation experiment. The post-INSPYRE simulation results are compared to the available integral and local data from post-irradiation examinations, and benchmarked on the evolution during irradiation of quantities of engineering interest (e.g., fuel central temperature, fission gas release). The comparison with the pre-INSPYRE results is reported to evaluate the impact of the novel models on the predicted pin performance. The outcome represents a step forward towards the description of fuel behaviour in fast reactor irradiation conditions, and allows the identification of the main remaining gaps.

Developing girder distribution factors in bridge analysis through B-WIM measurements: An empirical study

  • Widi Nugraha;Winarputro Adi Riyono;Indra Djati Sidi;Made Suarjana;Ediansjah Zulkifli
    • Structural Monitoring and Maintenance
    • /
    • 제10권3호
    • /
    • pp.207-220
    • /
    • 2023
  • The safety of bridges are critical in our transportation infrastructure. Bridge design and analysis require complex structural analysis procedures to ensure their safety and stability. One common method is to calculate the maximum moment in the girders to determine the appropriate bridge section. Girder distribution factors (GDFs) provide a simpler approach for performing this analysis. A GDF is a ratio between the response of a single girder and the total response of all girders in the bridge. This paper explores the significance of GDFs in bridge analysis and design, including their importance in the evaluation of existing bridges. We utilized Bridge Weigh-in-motion (B-WIM) measurements of five simple supported girder bridge in Indonesia to develop a simple GDF provisions for the Indonesia's bridge design code. The B-WIM measurements enable us to know each girder strain as a response due to vehicle loading as the vehicle passes the bridge. The calculated GDF obtained from the B-WIM measurements were compared with the code-specified GDF and the American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) bridge design specification. Our study found that the code specified GDF was adequate or conservative compared to the GDF obtained from the B-WIM measurements. The proposed GDF equation correlates well with the AASHTO LRFD bridge design specification. Developing appropriate provisions for GDFs in Indonesian bridge design codes can provides a practical solution for designing girder bridges in Indonesia, ensuring safety while allowing for easier calculations and assessments based on B-WIM measurements.

Indian Railways: Recent Trends in Control Accidents and Safety Measures for Passengers

  • Kumar, Katta Ashok
    • 동아시아경상학회지
    • /
    • 제2권4호
    • /
    • pp.48-55
    • /
    • 2014
  • Indian railways has been regularly in the news albeit for the wrong reasons. The frequency with which train accidents have been taking place has led to serious doubts in the public mind about the safety of rail travel and also the health of the network. Against this background, an attempt is made in this paper to assess the trends in railway accidents for the period from 2000-01 to 2009-10. The paper also highlighted the various measures taken by IR to prevent accidents to ensure safety to the public.