• Title/Summary/Keyword: Sacrificial oxidation

Search Result 11, Processing Time 0.031 seconds

Electrical Characterization of MOS (metal-oxide-semiconductor) Capacitors on Plasma Etch-damaged 4H-Silicon Carbide (플라즈마 에칭으로 손상된 4H-실리콘 카바이드 기판위에 제작된 MOS 커패시터의 전기적 특성)

  • 조남규;구상모;우용득;이상권
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.4
    • /
    • pp.373-377
    • /
    • 2004
  • We have investigated the electrical characterization of metal-oxide-semiconductor (MOS) capacitors formed on the inductively coupled plasma (ICP) etch-damaged both n- and p-type 4H-SiC. We found that there was an effect of a sacrificial oxidation treatment on the etch-damaged surfaces. Current-voltage and capacitance-voltage measurements of these MOS capacitors were used and referenced to those of prepared control samples without etch damage. It has been found that a sacrificial oxidation treatment can improve the electrical characteristics of MOS capacitors on etch-damaged 4H-SiC since the effective interface density and fixed oxide charges of etch-damaged samples have been found to increase while the breakdown field strength of the oxide decreased and the barrier height at the SiC-SiO$_2$ interface decreased for MOS capacitors on etch-damaged surfaces.

Development of Ag Nanowire Patterning Process Using Sacrificial Layer (희생층을 이용한 은 나노와이어 패터닝 공정 개발)

  • Ha, Bonhee;Jo, Sungjin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.7
    • /
    • pp.435-439
    • /
    • 2016
  • We developed a Ag nanowire patterning technique using a water-soluble sacrificial layer. To form a water-soluble sacrificial layer, germanium was deposited on the substrate and then water-soluble germanium oxide was simply formed by thermal oxidation of germanium using a conventional furnace. The formation of Ag nanowire patterns with various line and space arrangements was successfully demonstrated using this patterning process. The main advantage of this patterning technique is that it does not use a strong acid etchant, thereby preventing damage to the Ag nanowire during the patterning process.

Characteristics of Poly-Oxide of New Sacrificial Layer for Micromachining (마이크로머시닝을 위한 새로운 희생층인 다결정-산화막의 특성)

  • Hong, Soon-Kwan;Kim, Chul-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.71-77
    • /
    • 1996
  • Considering that polycrystalline silicon, a structural material of the micromachining, is affected by a sacrificial oxide layer, the poly-oxide obtained by the thermal oxidation of polycrystalline silicon is newly proposed and estimated as the sacrificial oxide layer. The grain size of the polycrystalline silicon grown on the poly-oxide is larger than that of poly crystalline silicon grown on the conventional sacrificial oxide layer. As a result of XRD, increase of (111) textures and formation of additional (220) textures are observed on the polycrystaIline silicon deposited on the poly-oxide. Also, the polycrystalline silicon grown on the poly-oxide represents small and uniform stress.

  • PDF

Characteristics and Formation of Thermal Oxidative Film Silicon Carbide for MOS Devices (MOS 소자용 Silicon Carbide의 열산화막 생성 및 특징)

  • O, Gyeong-Yeong;Lee, Gye-Hong;Lee, Gye-Hong;Jang, Seong-Ju
    • Korean Journal of Materials Research
    • /
    • v.12 no.5
    • /
    • pp.327-333
    • /
    • 2002
  • In order to obtain the oxidation layer for SiC MOS, the oxide layers by thermal oxidation process with dry and wet method were deposited and characterized. Deposition temperature for oxidation layer was $1100^{\circ}C$~130$0^{\circ}C$ by $O_2$ and Ar atmosphere. The oxide thickness, surface morphology, and interface characteristic of deposited oxide layers were measurement by ellipsometer, SEM, TEM, AFM, and SIMS. Thickness of oxidation layer was confirmed 50nm and 90nm to with deposition temperature at $1150^{\circ}C$ and $1200{\circ}C$ for dry 4 hours and wet 1 hour, respectively. For the high purity oxidation layer, the necessity of sacrificial oxidation which is etched for the removal of the defeats on the wafer after quickly thermal oxidation was confirmed.

Performance Evaluation of Antioxidizing Device for Protection of Car Body (자동차 차체 보호를 위한 산화방지 장치의 성능 평가)

  • Kim, Hae Sik;Yun, Yeong Jin;Ji, Jong Gi
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.5
    • /
    • pp.444-456
    • /
    • 2002
  • To protect the occurrence of the oxidation of car body, we developed antioxidizing device made with sacrificial anode. Because car body is made of iron and iron-alloy and oxidation potential of Mg, Al and Zn is higher than that of iron, sacrificial anodes were made with Mg, Al and Zn. Accordingly, Mg, Al and Zn are better oxidizing than car body, iron and iron-alloy can be protected from oxidizing. We have made an antioxidizing device and evaluated their anti-corrosive effect for iron piece in the solution of hydrochloric, nitric and sulfuric acid using balance, SEM and XPS. When iron pieces were connected with antioxidizing device of car body, weight loss by oxidation was remarkably reduced and surface corrosion of iron piece was protected. It was shown that the surface of iron pieces which is not con-nected to the device was changed to iron(Ⅲ) oxide, Fe$_2$O$_3$. Therefore, if this device is attached to car body, corrosion and oxidation of car body will be reduced, considerably.

Effect of the fixed oxide charge on the metal-oxide-silicon-on-insulator structures (metal-oxide-silicon-on-insulator 구조에서 고정 산화막 전하가 미치는 영향)

  • Jo, Yeong-Deuk;Kim, Ji-Hong;Cho, Dae-Hyung;Moon, Byung-Moo;Koh, Jung-Hyuk;Ha, Jae-Geun;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.83-83
    • /
    • 2008
  • Metal-oxide-silicon-on-insulator (MOSOI) structures were fabricated to study the effect caused by reactive ion etching (RIE) and sacrificial oxidation process on silicon-on-insulator (SOI) layer. The MOSOI capacitors with an etch-damaged SOI layer were characterized by capacitance-voltage (C-V) measurements and compared to the sacrificial oxidation treated samples and the reference samples without etching treatment. The measured C-V curves were compared to the numerical results from 2-dimensional (2-D) simulations. The measurements revealed that the profile of C-V curves significantly changes depending on the SOI surface condition of the MOSOI capacitors. The shift in the measured C-V curves, due to the difference of the fixed oxide charge ($Q_f$), together with the numerical simulation analysis and atomic force microscopy (AFM) analysis, allowed extracting the fixed oxide charges ($Q_f$) in the structures as well as 2-D carrier distribution profiles.

  • PDF

Fabrication and characterization of SILO isolation structure (SILO 구조의 제작 방법과 소자 분리 특성)

  • Choi, Soo-Han;Jang, Tae-Kyong;Kim, Byeong-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.328-331
    • /
    • 1988
  • Sealed Interface Local Oxidation (SILO) technology has been investigated using a nitride/oxide/nitride three-layered sandwich structure. P-type silicon substrate was either nitrided by rapid thermal processing, or silicon nitride was deposited by LPCVD method. A three-layered sandwich structure was patterned either by reactive ion etch (RIE) mode or by plasma mode. Sacrificial oxidation conditions were also varied. Physical characterization such as cross-section analysis of field oxide, and electrical characterization such as gate oxide integrity, junction leakage and transistor behavior were carried out. It was found that bird's beak was nearly zero or below 0.1um, and the junction leakages in plasma mode were low compared to devices of the same geometry patterned in RIE mode, and gate oxide integrity and transistor behavior were comparable. Conclusively, SILO process is compatible with conventional local oxidation process.

  • PDF

Optimum Cathodic Protection for Stainless Steel Shaft of Small-Size Boat (소형선박용 스테인리스강 축의 음극방식 응용)

  • Bae, I.Y.;Park, J.D.;Kang, D.S.;Lee, M.H.;Kim, K.J.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.232-233
    • /
    • 2005
  • Stainless steel has been stably used closed by passivity oxidation films($Cr_2O_3$) is made by neutral atmospheric environment. However, passivity oxidation films of the surface of stainless steel occasionally comes to be destroyed in seawater which is influenced by an environment having halogen ion like $Cl^-$, then, localization corrosion comes to occur. Stainless steel 304 for shaft system material of the small-size FRP fishing boat on seawater environments made an experiment on simulation of sacrifical anode(Al, Zn). Through these experiment and study, following results have been obtained ; According to the field inspection and corrosion simulation, the corrosion on the 2nd class stainless steel shaft(STS 304) in FRP fishing boat has been verified to occur by crevice corrosion and galvanic corrosion etc.. According to the comparison and analysis of Stainless steel 304 shaft materials after simulation leaving unprotected and applying cathodic protection, unprotected shaft specimen of stainless steel 304 was severely corroded, but, protected shaft specimen was not totally corroded. This result is assumed to be made by the facts that anodic reaction, $Fe{\rightarrow}Fe^{2+}$ + $2e^-$, has been restricted by the cathodic protection current of sacrificial anode material.

  • PDF

C-V Characterization of Plasma Etch-damage Effect on (100) SOI (Plasma Etch Damage가 (100) SOI에 미치는 영향의 C-V 특성 분석)

  • Jo, Yeong-Deuk;Kim, Ji-Hong;Cho, Dae-Hyung;Moon, Byung-Moo;Cho, Won-Ju;Chung, Hong-Bay;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.711-714
    • /
    • 2008
  • Metal-oxide-semiconductor (MOS) capacitors were fabricated to investigate the plasma damage caused by reactive ion etching (RIE) on (100) oriented silicon-on-insulator (SOI) substrates. The thickness of the top-gate oxide, SOI, and buried oxide layers were 10 nm, 50 nm, and 100 nm, respectively. The MOS/SOI capacitors with an etch-damaged SOI layer were characterized by capacitance-voltage (C-V) measurements and compared to the sacrificial oxidation treated samples and the reference samples without etching. The measured C-V curves were compared to the numerical results from corresponding 2-dimensional (2-D) structures by using a Silvaco Atlas simulator.

Simple and Ultrasensitive Chemically Amplified Electrochemical Detection of Ferrocenemethanol on 4-Nitrophenyl Grafted Glassy Carbon Electrode

  • Koh, Ahyeon;Lee, Junghyun;Song, Jieun;Shin, Woonsup
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.286-292
    • /
    • 2016
  • Chemically amplified electrochemical detection, redox-active probe being amplified its electrochemical anodic current by a sacrificial electron donor presenting in solution, holds great potential for simple and quantitative bioanalytical analysis. Herein, we report the chemically amplified electrochemical analysis that drastically enhanced a detection of ferrocenemethanol (analyte) by ferrocyanide (chemical amplifier) on 4-nitrophenyl grafted glassy carbon electrodes at $60^{\circ}C$. The glassy carbon electrode grafted with a 4-nitrophenyl group using an electrochemical reduction suppressed the oxidation of ferrocyanide and thus enabled detection of ferrocenemethanol with excellent selectivity. The ferrocenemethanol was detected down to an nM range using a linear sweep voltammetry under kinetically optimized conditions. The detection limit was improved by decreasing the concentration of the ferrocyanide and increasing temperature.