• Title/Summary/Keyword: SW Optimization

Search Result 82, Processing Time 0.024 seconds

Mechanistic Investigation of the Copper(I)-Catalyzed Trifluoromethylthiolation Using Sulfonyl Hypervalent Iodonium Ylide as the SCF3 Source: A DFT Study

  • Park, Yoonsu;Jung, Yousung
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.337-346
    • /
    • 2014
  • Trifluoromethylthiol functional group(이하 -SCF3)은 약학적으로 유용한 물질이다. 이 연구는 최근 개발된 Shibata의 Direct trifluoromethylthiolation reaction의 반응 메커니즘을 계산화학적으로 평가했다. 반응 메커니즘은 크게 Carbene formation, Rearrangement, Electrophilic SCF3 reagent generation 세 단계로 나눌 수 있다. 각 과정에 대해 구조에 대한 full optimization이 진행되었고, 특히 alpha-carbene sulfonyl species의 thermal rearrangement에 관한 첫번째 계산화학적 평가가 이루어졌다.

  • PDF

Electronic Structure and Electrical Performance Co-optimization of Highly Scaled Tunneling Field-Effect Transistors.

  • Jo, Yong-Beom;Jeong, Yeong-Hun;Jo, Seong-Jae
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.383-391
    • /
    • 2017
  • 본 논문은 1nm 직경인 NW-TFET의 전류구동 능력을 $sp3d5s^*$ model을 통해 분석하였다. 직경이 줄어들수록 띠구조의 밴드 갭이 커지는 것이 확인되었으며, 직경이 줄면 터널링 전류 량이 현저히 줄어, 적절한 재료선택이 필요할 것으로 예측된다. 실리콘과 게르마늄을 동일 조건하에 분석한 결과, 게르마늄 기반 TFET은 실리콘 기반 TFET의 스위칭 성능을 유지 하면서도, $10^6{\sim}10^8$배 정도의 전류 량을 개선 시킬 수 있을 것으로 기대된다.

  • PDF

TowerWalker: Speed improvement through trajectory optimization and maximally elongated leg (타워워커: 보행 경로 최적화와 극대화된 다리 길이를 통한 속도 향상)

  • Nam, Jiwon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.389-396
    • /
    • 2016
  • In order to maximize the speed of Theo Jansen Mechanism in an given design space and prototyping material, the trajectory path was maximized according to several literature reviews, and the lower leg was elongated maximally in order to minimize the shift between support phase and transfer phase.

  • PDF

얀센 메커니즘 기반의 라인트레이싱 로봇 설계

  • Gang, Nam-Gyu;Lee, Su-Hong
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.528-532
    • /
    • 2017
  • The Theo Jansen mechanism using 1 degree of freedom is special system of walking robot. The trajectory made by the point of ground position is similar to other walking robot using many degrees of freedom. Because of diversity of design parameter of the Jansen mechanism, it makes a lot of trajectory and takes possibilities of optimization. However this research doesn't focus on the optimization of trajectory, but it focused on comprehensive design of the robot using well-known trajectory and line tracer logic to go fast and accurate along the line. The logic to follow a line has many kinds of possibility of algorithm. To eliminate uncertainty about recognizing a line, I divide the case of line following situation and make optimized logic.

  • PDF

Development of a Jansen Mechanism for Line Tracing (라인 트레이싱을 위한 얀센 메커니즘 기구의 개발)

  • Gwon, O-Sun;Kim, Min-Su;Kim, U-Eun;Son, Hyeon-U;Im, Gyu-Do;Lee, Chun-Yeol
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.511-515
    • /
    • 2017
  • Various walking robot platforms have been developed to carry out missions such as explorations, pass of obstacle or inspections of dangerous environments. In this work, a four legs mechanism based on Jansen mechanism is developed, which can trace a certain line. In order to maximize the tracing speed, mechanism design is performed in multiple phases using m.sketch, EdisonDesign and Arduino programs. In design process, control of power path and optimization of the locus of legs(GL/GAC) are found to be most important. A prototype model is constructed and test run to check the validity of the design optimization.

  • PDF

Hierarchical sampling optimization of particle filter for global robot localization in pervasive network environment

  • Lee, Yu-Cheol;Myung, Hyun
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.782-796
    • /
    • 2019
  • This paper presents a hierarchical framework for managing the sampling distribution of a particle filter (PF) that estimates the global positions of mobile robots in a large-scale area. The key concept is to gradually improve the accuracy of the global localization by fusing sensor information with different characteristics. The sensor observations are the received signal strength indications (RSSIs) of Wi-Fi devices as network facilities and the range of a laser scanner. First, the RSSI data used for determining certain global areas within which the robot is located are represented as RSSI bins. In addition, the results of the RSSI bins contain the uncertainty of localization, which is utilized for calculating the optimal sampling size of the PF to cover the regions of the RSSI bins. The range data are then used to estimate the precise position of the robot in the regions of the RSSI bins using the core process of the PF. The experimental results demonstrate superior performance compared with other approaches in terms of the success rate of the global localization and the amount of computation for managing the optimal sampling size.

Shape optimization of a bow for maximizing internal-energy (내부에너지를 최대로 하는 활 구조의 최적화)

  • Moon, Myeong-Jo;Lee, Hyun-Jung
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.222-227
    • /
    • 2016
  • In this paper, the optimized design for bow structure was investigated by using EDISON software. Considering the mechanism of the bow, non-linear FEM analysis was essential. The factors of the design are height, width, number of holes and taper value. High performance of the internal energy and lowest mass were main issues. The limit of the von-mises stress was yield strength for the material. Material was chosen by considering typical bow material, Aluminum. Using Taguchi method($L_9$), 9 models were selected and contribution rate was calculated for each factors. Following the contribution rate, 3 factors were fixed and optimized model was predicted. After making optimized model for FEM analysis, the value of internal-energy, mass for FEM model were compared with predicted value, calculated the percentage error and figure out the reliability of Taguchi method.

  • PDF

walking mechanism design based on Jansen mechanism for moving slope/ obstacle/ special surface (경사/ 장애물/ 특수 표면을 이동할 수 있는 얀센 매커니즘 기반의 보행기구 설계)

  • Kim, So Won;Park, Young Cheol;Jeon, Eun Seo
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.463-466
    • /
    • 2016
  • This study has designed a walking mechanism that is able to pass by a variety of environments, such as slope, obstructions, special surface in there, the mechanism suggested by Janssen has shown an ideal bridge structure made of 11 joints. V in the study, these programs are use that is m-sketch, m-designer, Janssen mechanism optimization solver for the optimum design of m-sketch, 3D component reflecting the given strip dimension is used because there is a limit in the given. As a result, a stable mechanism for walking could be implemented.

  • PDF

Simulation-based Jansen mechanism utilizing walking robot of the design and implementation in order to implement the best walking movement. (최적 보행 동작 구현을 위한 시뮬레이션 기반 Jansen Mechanism 활용 보행 로봇 설계 및 구현.)

  • Kim, Heechan;Kim, SeungHa
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.467-468
    • /
    • 2016
  • The importance of the recent manufacturing industry have been made to invest in a lot of assistance and human resource development at the national dimension in which to rise again. However Learned in actual school education kinetic, and the use to how product design structural knowledge, Often it feels vague unlikely whether it is possible to derive an optimal product. In this study, by using the simulation-based Jansen Mechanism designed a walking robot, after optimization of the numerical consideration when designing for optimum walking motion, through simulation through the actual production resulting numerical information is examined whether valid. In addition, through the actual production was walking robot, to verify the validity of the simulation-based design.

  • PDF

Pass obstacle walking robot using Jansen mechanism (경사/장애물/특수 표면을 이동할 수 있는 얀센 매커니즘 기반의 보행기구 설계)

  • Song, Chi kwang;Park, Jung bin;Choi, Hoon;Kim, Jong hyuk;An, Hyun kyum;Lee, Gun hee
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.477-480
    • /
    • 2016
  • Based on the Jansen mechanism theory, a walking robot is developed, which is able to overcome the given obstacles. Taking joint positions and leg directions as design parameters, the walking robot is analyzed. In order to analyze and optimize the leg motion, Edison program and Jansen mechanism optimization solver are used, respectively. It is found that Edison program is so effective to determine joint variables and position of leg direction. With the help of these programs, lots of trials or errors could be saved.

  • PDF