• Title/Summary/Keyword: SURF Algorithm

검색결과 100건 처리시간 0.033초

Multi-Person Tracking Using SURF and Background Subtraction for Surveillance

  • Yu, Juhee;Lee, Kyoung-Mi
    • Journal of Information Processing Systems
    • /
    • 제15권2호
    • /
    • pp.344-358
    • /
    • 2019
  • Surveillance cameras have installed in many places because security and safety is becoming important in modern society. Through surveillance cameras installed, we can deal with troubles and prevent accidents. However, watching surveillance videos and judging the accidental situations is very labor-intensive. So now, the need for research to analyze surveillance videos is growing. This study proposes an algorithm to track multiple persons using SURF and background subtraction. While the SURF algorithm, as a person-tracking algorithm, is robust to scaling, rotating and different viewpoints, SURF makes tracking errors with sudden changes in videos. To resolve such tracking errors, we combined SURF with a background subtraction algorithm and showed that the proposed approach increased the tracking accuracy. In addition, the background subtraction algorithm can detect persons in videos, and SURF can initialize tracking targets with these detected persons, and thus the proposed algorithm can automatically detect the enter/exit of persons.

메모리 사용률을 개선한 SURF 알고리즘 특징점 추출기의 하드웨어 가속기 설계 (An Implementation of a Feature Extraction Hardware Accelerator based on Memory Usage Improvement SURF Algorithm)

  • 정창민;곽재창;이광엽
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 추계학술대회
    • /
    • pp.77-80
    • /
    • 2013
  • SURF 알고리즘은 영상의 특징점 검출 및 서술자를 생성하는 알고리즘으로 크기와 회전, 조명 및 시점 등의 환경 변화에 강인한 특징을 가지고 있다. 이러한 특징 때문에 객체 인식, 파노라마 이미지, 3차원 영상 복원 등 영상처리 분야에서 많이 사용되고 있다. 하지만 SURF 알고리즘과 같은 대부분의 인식 알고리즘은 많은 양의 연산을 필요로 하기 때문에 실시간 구현이 어렵다. 본 논문은 SURF의 메모리 접근 횟수와 메모리 사용량을 분석하여 효율적인 메모리를 설계함으로써 메모리 접근 횟수와 메모리 사용량을 최소화하여 실시간 구현이 가능하도록 설계하였다.

  • PDF

모바일 증강현실 기반의 마커리스 추적 알고리즘 성능 연구 (The Study on Marker-less Tracking Algorithm Performance based on Mobile Augmented Reality)

  • 윤지연;문일영
    • 한국항행학회논문지
    • /
    • 제16권6호
    • /
    • pp.1032-1037
    • /
    • 2012
  • 증강현실이란 실제 환경에 가상으로 생성된 정보를 실시간으로 증강하고 사용자가 그 정보들과 상호작용할 수 있도록 함으로써, 정보의 활용을 극대화하는 차세대 정보처리 기술이다. 본 논문에서는 모바일 환경에서 증강현실 시스템을 구현하기 위한 물체 추적 방안으로 마커를 사용하지 않는 마커리스 추적 알고리즘을 연구하였다. 마커리스 방식의 증강현실은 마커를 따로 부착하지 않아도 되고 위치의 제약이 없어서 사용자가 증강현실 기술을 사용하기 편리하다는 장점이 있다. 본 논문에서는 마커리스 추적을 위해 특징점 추출 기반의 SURF 알고리즘을 사용하였다. SURF 알고리즘은 다른 특징점 추출 기반 알고리즘보다 연산량이 적어 PC 환경보다 비교적 낮은 하드웨어 성능을 가지고 있어 모바일 기기에도 사용할 수 있다. 그러나 SURF 알고리즘은 모바일 기기에 적합한 최적화 작업이 되어있지 않다. 그러므로 본 논문에서는 모바일 기기에 적합한 추적을 위해 SURF 알고리즘을 여러 환경에서 실험하여 성능을 비교하고, 최적화 방안을 연구하였다.

컬러 불변 특징과 광역 특징을 갖는 확장 SURF(Speeded Up Robust Features) 알고리즘 (Extended SURF Algorithm with Color Invariant Feature and Global Feature)

  • 윤현섭;한영준;한헌수
    • 대한전자공학회논문지SP
    • /
    • 제46권6호
    • /
    • pp.58-67
    • /
    • 2009
  • 대응점 정합은 컴퓨터 비전에서 중요한 작업 중에 하나지만 스케일, 조명, 시점이 변한 환경에서 대응점을 찾는 과정은 매우 어렵다. 대응점 정합 알고리즘인 SURF(Speeded Up Robust Features) 기법은 SIFT(Scale Invariant Feature Transform) 기법에 비해 정합 속도가 매우 빠르고 비슷한 정합 성능을 보여 널리 사용되고 있다. 하지만 SURF 기법은 흑백 영상과 지역 공간정보를 사용하기 때문에 유사한 패턴이 존재하는 영상에서 대응점의 정합 성능이 매우 떨어진다. 이런 문제점을 해결하기 위해 본 논문에서는 강인한 컬러 특징 정보와 광역적 특징 정보를 이용하는 확장 SURF 알고리즘을 제안한다. 제안하는 알고리즘은 비슷한 패턴이 존재하더라도 색상정보과 광역 공간 정보를 추가로 사용되기 때문에 대응점 매칭 성능을 크게 향상시킨다. 본 논문에서는 제안하는 방법의 우수성을 조명과 시점이 변화하고 유사한 패턴들을 갖는 영상들에 적용하여 기존의 방법들과 비교 실험함으로서 입증하였다.

A Multiple Features Video Copy Detection Algorithm Based on a SURF Descriptor

  • Hou, Yanyan;Wang, Xiuzhen;Liu, Sanrong
    • Journal of Information Processing Systems
    • /
    • 제12권3호
    • /
    • pp.502-510
    • /
    • 2016
  • Considering video copy transform diversity, a multi-feature video copy detection algorithm based on a Speeded-Up Robust Features (SURF) local descriptor is proposed in this paper. Video copy coarse detection is done by an ordinal measure (OM) algorithm after the video is preprocessed. If the matching result is greater than the specified threshold, the video copy fine detection is done based on a SURF descriptor and a box filter is used to extract integral video. In order to improve video copy detection speed, the Hessian matrix trace of the SURF descriptor is used to pre-match, and dimension reduction is done to the traditional SURF feature vector for video matching. Our experimental results indicate that video copy detection precision and recall are greatly improved compared with traditional algorithms, and that our proposed multiple features algorithm has good robustness and discrimination accuracy, as it demonstrated that video detection speed was also improved.

SURF와 멀티밴드 블렌딩에 기반한 파노라마 스티칭 (Stitcing for Panorama based on SURF and Multi-band Blending)

  • 라연;신성식;박현주;권오봉
    • 한국멀티미디어학회논문지
    • /
    • 제14권2호
    • /
    • pp.201-209
    • /
    • 2011
  • 이 논문은 이미지 매칭 알고리즘의 일종인 수정된 SURF(Speeded Up Robust Feature)와 이미지 블렌딩 알고리즘의 일종인 멀티밴드 블렌딩으로 구성된 파노라마 이미지 스티칭 시스템을 제안한다. 이 논문은 처음에 수정된 SURF를 기술하고 SIFT(Scale Invariant Feature Transform)와 비교하여 SURF를 이 시스템에서 채택한 이유에 대하여 논한다. 그리고 멀티밴드 블렌딩에 대하여 기술하고, 이어서 제안된 파노라마 이미지 스티칭 시스템의 구조에 대하여 설명하고 마지막으로 이미지 질과 처리시간에 대한 평가를 한다. 평가결과는 제안된 시스템이 개별 이미지들을 이음매 없이 연결하였으며, 많은 개개의 이미지 데이터에 대해서도 완전한 파노라마 이미지를 생성하였으며 처리 시간도 SIFT보다 빨랐다.

SURF알고리듬에서의 고속 특징점 검출 방식 (A Fast Interest Point Detection Method in SURF Algorithm)

  • 황인소;엄일규;문용호;하석운
    • 대한임베디드공학회논문지
    • /
    • 제10권1호
    • /
    • pp.49-55
    • /
    • 2015
  • In this paper, we propose a fast interest point detection method using SURF algorithm. Since the SURF algorithm needs a great computations to detect the interest points and obtain the corresponding descriptors, it is not suitable for real-time based applications. In order to overcome this problem, the interest point detection step is parallelized by OpenMP and SIMD based on analysis of the scale space representation process and localization one in the step. The simulation results demonstrate that processing speed is enhanced about 55% by applying the proposed method.

객체인식을 위한 FAST와 BRIEF 알고리즘 기반 FPGA 설계 (FPGA based Implementation of FAST and BRIEF algorithm for Object Recognition)

  • 허훈;이광엽
    • 전기전자학회논문지
    • /
    • 제17권2호
    • /
    • pp.202-207
    • /
    • 2013
  • 본 논문은 기존의 FAST와 BRIEF 알고리즘을 Zynq-7000 Soc Platform에서 하드웨어로 구현했다. 대표적으로 SIFT 나 SURF 알고리즘을 사용하여 특징점 기반 하드웨어 가속기로 구현 하지만, 하드웨어 비용과 내부 메모리가 많이 필요하다. 제안하는 FAST & BRIEF 가속기는 기존의 SIFT 나 SURF 가속기 보다 내부 메모리 사용량을 약 57%, 하드웨어 비용을 약 70% 정도 감소하고, 수행 시간은 Clock 당 0.17 Pixel를 처리한다.

객체 추적을 위한 SURF 기반 특이점 추출 및 서술자 생성의 하드웨어 설계 (Hardware Design of SURF-based Feature extraction and description for Object Tracking)

  • 도용식;정용진
    • 전자공학회논문지
    • /
    • 제50권5호
    • /
    • pp.83-93
    • /
    • 2013
  • 최근 영상처리 응용의 일환으로 객체 추적 시스템에 많이 활용되는 SURF 알고리즘의 경우 영상의 회전 및 크기 변화에 강인한 특이점을 추출한다는 특징이 있지만 연산이 복잡하고 연산량이 많아 임베디드 환경에서 IP로 사용되기 위해서는 하드웨어 가속기 개발이 필수적이다. 하지만 이 때 요구되는 내부 메모리 사이즈가 매우 크기 때문에 ASIC이나 SoC 시스템으로 개발 할 때 칩 회로 사이즈가 커서 IP의 가치를 떨어뜨리게 된다. 본 논문에서는 하드웨어 가속기 개발 시 회로면적에 효율적인 설계를 위해 내부 블록메모리 사용량을 줄이고 외부 메모리와 DMA를 사용하여 세분화된 Sub-IP 구조로 설계하는 것에 대해 연구하고 간단한 객체 추적 알고리즘을 개발하여 그 결과를 적용하였다. ARM Cortex-M0, AHB-lite, APB, DMA, SDRAM Controller로 구성된 시스템 환경에서 실험 결과 VGA(640x480)영상에서 SURF 알고리즘의 처리속도는 약 31frame/sec, 블록 메모리의 크기는 81Kbytes, 30nm 공정에서 회로의 크기는 약 74만 게이트 크기로 SoC 칩의 하드웨어 IP로 활용이 가능하였다. SURF와 비슷한 영상처리 알고리즘에서도 본 논문에서 제안하는 설계방법을 적용하면 타겟 어플리케이션에 효율적인 하드웨어 설계를 할 수 있을 것으로 기대된다.

SURF 특징점 추출 알고리즘을 이용한 얼굴인식 연구 (Face Recognition based on SURF Interest Point Extraction Algorithm)

  • 강민구;추원국;문승빈
    • 전자공학회논문지CI
    • /
    • 제48권3호
    • /
    • pp.46-53
    • /
    • 2011
  • 본 논문에서는 대표적인 특징점 추출 알고리즘인 SURF (Speeded Up Robust Features)를 이용한 얼굴 인식 방법을 소개한 다. 일반적으로, SURF를 이용한 물체 인식은 특징점 추출 및 정합만을 수행하지만, 본 논문에서 제안하는 SURF를 이용한 얼굴 인식 방법은 특징점 추출 및 정합뿐만 아니라 얼굴 영상 회전 및 특징점 검증을 추가로 수행한다. 얼굴 영상 회전은 특징점의 수를 증가시키기 위해 수행되며, 특징점 검증은 정확하게 정합된 특징점들을 찾기 위해 수행된다. 비록 본 논문에서 제안한 SURF를 이용한 얼굴 인식 방법은 PCA를 이용한 방법보다 연산 시간이 더 요구되었지만, 인식률은 보다 더 높았다. 이러한 실험 결과를 통해, 특징점 추출 알고리즘도 얼굴 인식에 적용할 수 있음을 확인할 수 있었다.